IDEAS home Printed from https://ideas.repec.org/p/grt/wpegrt/2010-04.html
   My bibliography  Save this paper

Rotation in Multiple Correspondence Analysis: a planar rotation iterative procedure

Author

Listed:
  • Jérome SARACCO
  • Marie CHAVENT
  • Vanessa KUENTZ

Abstract

Multiple Correspondence Analysis (MCA) is a well-known multivariate method for statistical description of categorical data (see for instance Greenacre and Blasius, 2006). Similarly to what is done in Principal Component Analysis (PCA) and Factor Analysis, the MCA solution can be rotated to increase the components simplicity. The idea behind a rotation is to find subsets of variables which coincide more clearly with the rotated components. This implies that maximizing components simplicity can help in factor interpretation and in variables clustering. In PCA, the probably most famous rotation criterion is the varimax one introduced by Kaiser (1958). Besides, Kiers (1991) proposed a rotation criterion in his method named PCAMIX developed for the analysis of both numerical and categorical data, and including PCA and MCA as special cases. In case of only categorical data, this criterion is a varimax-based one relying on the correlation ratio between the categorical variables and the MCA numerical components. The optimization of this criterion is then reached by the algorithm of De Leeuw and Pruzansky (1978). In this paper, we give the analytic expression of the optimal angle of planar rotation for this criterion. If more than two principal components are to be retained, similarly to what is done by Kaiser (1958) for PCA, this planar solution is computed in a practical algorithm applying successive pairwise planar rotations for optimizing the rotation criterion. A simulation study is used to illustrate the analytic expression of the angle for planar rotation. The proposed procedure is also applied on a real data set to show the possible benefits of using rotation in MCA.

Suggested Citation

  • Jérome SARACCO & Marie CHAVENT & Vanessa KUENTZ, 2010. "Rotation in Multiple Correspondence Analysis: a planar rotation iterative procedure," Cahiers du GREThA (2007-2019) 2010-04, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
  • Handle: RePEc:grt:wpegrt:2010-04
    as

    Download full text from publisher

    File URL: http://cahiersdugretha.u-bordeaux.fr/2010/2010-04.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    categorical data; multiple correspondence analysis; correlation ratio; rotation; varimax criterion;
    All these keywords.

    JEL classification:

    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:grt:wpegrt:2010-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ernest Miguelez (email available below). General contact details of provider: https://edirc.repec.org/data/ifredfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.