IDEAS home Printed from https://ideas.repec.org/p/gla/glaewp/2022_10.html
   My bibliography  Save this paper

Expected returns to crime and crime location

Author

Listed:
  • Nils Braakmann
  • Arnaud Chevalier
  • Tanya Wilson

Abstract

We provide first evidence that temporal variations in the expected returns to crime affect the location of property crime. Our identification strategy relies on the widely-held perception in the UK that households of South Asian descent store gold jewellery at home. Price movements on the international market for gold exogenously affect the expected gains from burgling these households, which become relatively more lucrative targets as the gold price increases. Using a neighbourhood-level panel on reported crime and difference-in-differences, we find that burglaries in South Asian neighbourhoods are more sensitive to variations in the gold price than other neighbourhoods in the same municipality, confirming that burglars react rationally to variations in the expected returns to their activities. We conduct a battery of tests on neighbourhood and individual data to eliminate alternative explanations.

Suggested Citation

  • Nils Braakmann & Arnaud Chevalier & Tanya Wilson, 2022. "Expected returns to crime and crime location," Working Papers 2022_10, Business School - Economics, University of Glasgow.
  • Handle: RePEc:gla:glaewp:2022_10
    as

    Download full text from publisher

    File URL: https://www.gla.ac.uk/media/Media_879354_smxx.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Croce, M.M. & Nguyen, Thien T. & Raymond, S. & Schmid, L., 2019. "Government debt and the returns to innovation," Journal of Financial Economics, Elsevier, vol. 132(3), pages 205-225.
    2. Nikolay Hristov & Markus Roth, 2019. "Uncertainty Shocks and Financial Crisis Indicators," CESifo Working Paper Series 7839, CESifo.
    3. Deshuai Hou & Luhan Shi & Hong He & Jian Xiong, 2023. "Research on the Deviation of Corporate Green Behaviour under Economic Policy Uncertainty Based on the Perspective of Green Technology Innovation in Chinese Listed Companies," Sustainability, MDPI, vol. 15(9), pages 1-27, May.
    4. Manfred M. Fischer & Florian Huber & Michael Pfarrhofer, 2018. "The transmission of uncertainty shocks on income inequality: State-level evidence from the United States," Papers 1806.08278, arXiv.org.
    5. Idriss Fontaine, 2021. "Uncertainty and Labour Force Participation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(2), pages 437-471, April.
    6. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    7. Kučerová, Zuzana & Pakši, Daniel & Koňařík, Vojtěch, 2024. "Macroeconomic fundamentals and attention: What drives european consumers’ inflation expectations?," Economic Systems, Elsevier, vol. 48(1).
    8. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    9. Salzmann, Leonard, 2020. "The Impact of Uncertainty and Financial Shocks in Recessions and Booms," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224588, Verein für Socialpolitik / German Economic Association.
    10. Yingce Yang & Junjie Guo & Ruihong He, 2023. "The Asymmetric Impact of the Oil Price and Disaggregate Shocks on Economic Policy Uncertainty: Evidence From China," SAGE Open, , vol. 13(2), pages 21582440231, June.
    11. Chan, Yue-Cheong & Saffar, Walid & Wei, K.C. John, 2021. "How economic policy uncertainty affects the cost of raising equity capital: Evidence from seasoned equity offerings," Journal of Financial Stability, Elsevier, vol. 53(C).
    12. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    13. Yoshito Funashima, 2022. "Economic policy uncertainty and unconventional monetary policy," Manchester School, University of Manchester, vol. 90(3), pages 278-292, June.
    14. Ma, Yongfan & Hu, Xingcun, 2024. "Shadow banking and SME investment: Evidence from China's new asset management regulations," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 332-349.
    15. Ongena, Steven & Savaşer, Tanseli & Şişli Ciamarra, Elif, 2022. "CEO incentives and bank risk over the business cycle," Journal of Banking & Finance, Elsevier, vol. 138(C).
    16. Li, Xiao-Ming, 2017. "New evidence on economic policy uncertainty and equity premium," Pacific-Basin Finance Journal, Elsevier, vol. 46(PA), pages 41-56.
    17. Metiu, Norbert, 2021. "Anticipation effects of protectionist U.S. trade policies," Journal of International Economics, Elsevier, vol. 133(C).
    18. Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
    19. Lee, Seung Jung & Liu, Lucy Qian & Stebunovs, Viktors, 2022. "Risk-taking spillovers of U.S. monetary policy in the global market for U.S. dollar corporate loans," Journal of Banking & Finance, Elsevier, vol. 138(C).
    20. Miescu, Mirela & Rossi, Raffaele, 2021. "COVID-19-induced shocks and uncertainty," European Economic Review, Elsevier, vol. 139(C).

    More about this item

    Keywords

    Crime; Gold prices; Returns to crime; Becker model; Optimal Foraging Theory; Criminal Behaviour; Crime Location;
    All these keywords.

    JEL classification:

    • K42 - Law and Economics - - Legal Procedure, the Legal System, and Illegal Behavior - - - Illegal Behavior and the Enforcement of Law
    • J19 - Labor and Demographic Economics - - Demographic Economics - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gla:glaewp:2022_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Business School Research Team (email available below). General contact details of provider: https://edirc.repec.org/data/dpglauk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.