IDEAS home Printed from https://ideas.repec.org/p/fth/pariem/2001.33.html
   My bibliography  Save this paper

A Convergence Result for Non-Autonomous Subgradient Evolution Equations and Its Application to the Steepest Descent Exponential Penality Trajectory in Linear Programming

Author

Listed:
  • Baillon, J.B.
  • Cominetti, R.

Abstract

We present a new result on the asymptotic behavior of non-autonomous subgradient evolution equations.

Suggested Citation

  • Baillon, J.B. & Cominetti, R., 2001. "A Convergence Result for Non-Autonomous Subgradient Evolution Equations and Its Application to the Steepest Descent Exponential Penality Trajectory in Linear Programming," Papiers d'Economie Mathématique et Applications 2001.33, Université Panthéon-Sorbonne (Paris 1).
  • Handle: RePEc:fth:pariem:2001.33
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hedy Attouch & Szilárd Csaba László, 2024. "Convex optimization via inertial algorithms with vanishing Tikhonov regularization: fast convergence to the minimum norm solution," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 99(3), pages 307-347, June.

    More about this item

    Keywords

    MATHEMATICS;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:pariem:2001.33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/cerp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.