IDEAS home Printed from https://ideas.repec.org/p/fth/harver/2085.html
   My bibliography  Save this paper

On Efficiency of Linear Estimators Under Heavy-Tailedness

Author

Listed:
  • Rustam Ibragimov

Abstract

The present paper develops a new unified approach to the analysis of efficiency, peakedness and majorization properties of linear estimators. It further studies the robustness of these properties to heavy-tailedness assumptions. the main results show that peakedness and majorization phenomena for random samples from log-concavely distributed populations established in the seminal work by Proschan (1965) continue to hold for not extremely thick- tailed distributions. However, these phenomena are reversed in the case of populations with extremely heavy-tailed densities. Among other results, we show that the sample mean is the best linear unbiased estimator of the population mean for not extremely heavy-tailed populations in the sense of its peakedness properties. Moreover, in such a case, the sample mean exhibits the important property of monotone consistency and, thus, an increase in the sample size always improves its performance. However, as we demonstrate, efficiency of the sample mean in the sense of its peakedness decreases with the sample size if the sample mean is used to estimate the population center under extreme thick-tailedness. We also provide applications of the main efficiency and majorization comparison results in the study of concentration inequalities for linear estimators as well as their extensions to the case of wide classes of dependent data. The main results obtained in the paper provide the basis for the analysis of many problems in a number of other areas, in addition to econometrics and statistics, and, in particular, have applications in the study of robustness of model of firm growth for firms that can invest into information about their markets, value at risk analysis, optimal strategies for a multiproduct monopolist as well that of inheritance models in mathematical evolutionary theory.

Suggested Citation

  • Rustam Ibragimov, 2005. "On Efficiency of Linear Estimators Under Heavy-Tailedness," Harvard Institute of Economic Research Working Papers 2085, Harvard - Institute of Economic Research.
  • Handle: RePEc:fth:harver:2085
    as

    Download full text from publisher

    File URL: http://www.economics.harvard.edu/pub/hier/2005/HIER2085.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rustam Ibragimov & Johan Walden, 2011. "Value at risk and efficiency under dependence and heavy-tailedness: models with common shocks," Annals of Finance, Springer, vol. 7(3), pages 285-318, August.
    2. Ibragimov, Rustam, 2008. "Heavy-tailedness and threshold sex determination," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2804-2810, November.
    3. Chirok Han & Jin Seo Cho & Peter C. B. Phillips, 2011. "Infinite Density at the Median and the Typical Shape of Stock Return Distributions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 282-294, April.
    4. Ankudinov, Andrei & Ibragimov, Rustam & Lebedev, Oleg, 2017. "Sanctions and the Russian stock market," Research in International Business and Finance, Elsevier, vol. 40(C), pages 150-162.
    5. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    6. Ankudinov, Andrei & Ibragimov, Rustam & Lebedev, Oleg, 2017. "Heavy tails and asymmetry of returns in the Russian stock market," Emerging Markets Review, Elsevier, vol. 32(C), pages 200-219.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:harver:2085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/ieharus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.