IDEAS home Printed from https://ideas.repec.org/p/fth/gremaq/96.436.html
   My bibliography  Save this paper

Bayesian Encompassing Specification Tests of a Parametric Model Against a Non Parametric Alternative

Author

Listed:
  • Florens, J.P.
  • Richard, J.F.
  • Rolin, J.M.

Abstract

An encompassing test between two models is based on the idea that the first model is able to explain the inference obtained by the second model. In a Bayesian Framework, the posterior distribution of the second model will then be compared to the posterior distribution built in hte first model trough a distribution on the parameter of the second model conditionally on the parameter of the first model. Such a strategy is used to test a parametric model against a non parametric one. This strategy is in particular justified by the inadequacy of usual tests as posterior odds. But the implementation of encompassing tests can only be made thanks to simulation techniques which intensively use representations of Dirichlet Measures.

Suggested Citation

  • Florens, J.P. & Richard, J.F. & Rolin, J.M., 1996. "Bayesian Encompassing Specification Tests of a Parametric Model Against a Non Parametric Alternative," Papers 96.436, Toulouse - GREMAQ.
  • Handle: RePEc:fth:gremaq:96.436
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Carvalho Ceregatti & Rafael Izbicki & Luis Ernesto Bueno Salasar, 2021. "WIKS: a general Bayesian nonparametric index for quantifying differences between two populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 274-291, March.
    2. Argiento, Raffaele & Guglielmi, Alessandra & Pievatolo, Antonio, 2010. "Bayesian density estimation and model selection using nonparametric hierarchical mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 816-832, April.
    3. Cinzia Carota, 2006. "Some Faults of the Bayes Factor in Nonparametric Model Selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(1), pages 37-42, May.
    4. Luai Al-Labadi, 2021. "The two-sample problem via relative belief ratio," Computational Statistics, Springer, vol. 36(3), pages 1791-1808, September.
    5. Kelter, Riko, 2022. "Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    6. Surya T. Tokdar & Ryan Martin, 2021. "Bayesian Test of Normality Versus a Dirichlet Process Mixture Alternative," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 66-96, May.
    7. Cinzia Carota, 2006. "Some Faults of the Bayes Factor in Nonparametric Model Selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(1), pages 37-42, May.

    More about this item

    Keywords

    ECONOMETRICS ; STATISTICS;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:gremaq:96.436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/getlsfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.