IDEAS home Printed from https://ideas.repec.org/p/fmg/fmgdps/dp212.html
   My bibliography  Save this paper

Risk and Return in the Spanish Stock Market

Author

Listed:
  • Enrique Sentana

Abstract

In this paper we use Spanish data to test the restrictions that a dynamic APT-type asset pricing model imposes on the risk-return relationship. For monthly returns on ten size-ranked portfolios and a value-weighted index, we find that those restrictions are rejected for different versions of the model over the period 1963-1992 , as well as over two subsamples. the evidence for the conditional models suggests that the Spanish stock market is segmented, which probably reflects the fact that it is only deep for a few stocks.

Suggested Citation

  • Enrique Sentana, 1995. "Risk and Return in the Spanish Stock Market," FMG Discussion Papers dp212, Financial Markets Group.
  • Handle: RePEc:fmg:fmgdps:dp212
    as

    Download full text from publisher

    File URL: http://www.lse.ac.uk/fmg/workingPapers/discussionPapers/fmg_pdfs/dp212.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 285-310, National Bureau of Economic Research, Inc.
    2. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    3. Ng, Victor & Engle, Robert F. & Rothschild, Michael, 1992. "A multi-dynamic-factor model for stock returns," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 245-266.
    4. Demos, Antonis & Sentana, Enrique, 1998. "An EM Algorithm for Conditionally Heteroscedastic Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 357-361, July.
    5. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
    6. Sentana, E. & Shah, M., 1994. "An Index of Co-Movements in Financial Time Series," Papers 9415, Centro de Estudios Monetarios Y Financieros-.
    7. Juan Carlos Gómez Sala & Ana María Gallego & Joaquín Marhuenda Fructuoso, 1992. "Evidencias empíricas del CAPM en el mercado español de capitales," Working Papers. Serie EC 1992-13, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    8. Gibbons, Michael R & Ross, Stephen A & Shanken, Jay, 1989. "A Test of the Efficiency of a Given Portfolio," Econometrica, Econometric Society, vol. 57(5), pages 1121-1152, September.
    9. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-389, October.
    10. King, Mervyn & Sentana, Enrique & Wadhwani, Sushil, 1994. "Volatility and Links between National Stock Markets," Econometrica, Econometric Society, vol. 62(4), pages 901-933, July.
    11. Rubio, Gonzalo, 1988. "Further international evidence on asset pricing : The case of the Spanish capital market," Journal of Banking & Finance, Elsevier, vol. 12(2), pages 221-242, June.
    12. Begoña Basarrate Urizar & Gonzalo Rubio, 1990. "A note on the seasonality in the risk-return relationship," Investigaciones Economicas, Fundación SEPI, vol. 14(2), pages 311-318, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro L. Sánchez-Torres & Enrique Sentana, 1998. "Mean-variance-skewness analysis: an application to risk premia in the Spanish stock market," Investigaciones Economicas, Fundación SEPI, vol. 22(1), pages 5-17, January.
    2. Gonzalo Rubio & Mikel Tapia, 1998. "The liquidity premium in equity pricing under a continuous auction system," The European Journal of Finance, Taylor & Francis Journals, vol. 4(1), pages 1-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonis Demos & Sofia Parissi, 1998. "Testing Asset Pricing Models: The Case of Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 2(3), pages 189-223, September.
    2. Antonis Demos & George Vasillelis, 2007. "U.K. Stock Market Inefficiencies and the Risk Premium," Multinational Finance Journal, Multinational Finance Journal, vol. 11(1-2), pages 97-122, March-Jun.
    3. Enrique Sentana & Gabriele Fiorentini, 1997. "Identification, Estimation and Testing of Conditionally Heteroskedastic Factor Models.Versión Revisada," Working Papers wp1997_9709, CEMFI.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    6. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    8. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    9. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. García-Ferrer, Antonio & González-Prieto, Ester & Peña, Daniel, 2012. "A conditionally heteroskedastic independent factor model with an application to financial stock returns," International Journal of Forecasting, Elsevier, vol. 28(1), pages 70-93.
    11. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    12. Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
    13. Zaichao Du & Pei Pei, 2020. "Backtesting portfolio value‐at‐risk with estimated portfolio weights," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 605-619, September.
    14. Enrique Sentana, 1998. "The relation between conditionally heteroskedastic factor models and factor GARCH models," Econometrics Journal, Royal Economic Society, vol. 1(RegularPa), pages 1-9.
    15. García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2011. "Forecasting electricity prices and their volatilities using Unobserved Components," Energy Economics, Elsevier, vol. 33(6), pages 1227-1239.
    16. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    17. Sentana, Enrique & Fiorentini, Gabriele, 2001. "Identification, estimation and testing of conditionally heteroskedastic factor models," Journal of Econometrics, Elsevier, vol. 102(2), pages 143-164, June.
    18. Mohamed Saidane & Christian Lavergne, 2007. "A structured variational learning approach for switching latent factor models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 91(3), pages 245-268, October.
    19. Gabriele Fiorentini & Enrique Sentana, 2012. "Tests for Serial Dependence in Static, Non-Gaussian Factor Models," Working Papers wp2012_1211, CEMFI.
    20. Michel Normandin, 1999. "The Integration of Financial Markets and the Conduct of Monetary Policies: The Case of Canada and the United States," Cahiers de recherche CREFE / CREFE Working Papers 67, CREFE, Université du Québec à Montréal.

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fmg:fmgdps:dp212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The FMG Administration (email available below). General contact details of provider: http://www.lse.ac.uk/fmg/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.