IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/2007-016.html
   My bibliography  Save this paper

Mean-variance vs. full-scale optimization: broad evidence for the U.K

Author

Listed:
  • Richard G. Anderson
  • Jane M. Binner
  • Thomas Elger
  • Björn Hagströmer
  • Birger Nilsson

Abstract

In the Full-Scale Optimization approach the complete empirical financial return probability distribution is considered, and the utility maximising solution is found through numerical optimization. Earlier studies have shown that this approach is useful for investors following non-linear utility functions (such as bilinear and S-shaped utility) and choosing between highly non-normally distributed assets, such as hedge funds. We clarify the role of (mathematical) smoothness and differentiability of the utility function in the relative performance of FSO among a broad class of utility functions. Using a portfolio choice setting of three common assets (FTSE 100, FTSE 250 and FTSE Emerging Market Index), we identify several utility functions under which Full-Scale Optimization is a substantially better approach than the mean variance approach is. Hence, the robustness of the technique is illustrated with regard to asset type as well as to utility function specification.

Suggested Citation

  • Richard G. Anderson & Jane M. Binner & Thomas Elger & Björn Hagströmer & Birger Nilsson, 2007. "Mean-variance vs. full-scale optimization: broad evidence for the U.K," Working Papers 2007-016, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:2007-016
    as

    Download full text from publisher

    File URL: https://s3.amazonaws.com/real.stlouisfed.org/wp/2007/2007-016.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arditti, Fred D, 1969. "A Utility Function Depending on the First Three Moments: Reply," Journal of Finance, American Finance Association, vol. 24(4), pages 720-720, September.
    2. Paul A. Samuelson, 1970. "The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 37(4), pages 537-542.
    3. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    4. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    5. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    6. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    7. Gourieroux, C. & Monfort, A., 2005. "The econometrics of efficient portfolios," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 1-41, January.
    8. Levy, Haim, 1969. "A Utility Function Depending on the First Three Moments: Comment," Journal of Finance, American Finance Association, vol. 24(4), pages 715-719, September.
    9. Scott, Robert C & Horvath, Philip A, 1980. "On the Direction of Preference for Moments of Higher Order Than the Variance," Journal of Finance, American Finance Association, vol. 35(4), pages 915-919, September.
    10. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    11. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Farias Neto, Joao Jose, 2008. "S-shaped utility, subprime crash and the black swan," MPRA Paper 12122, University Library of Munich, Germany.
    2. David Johnstone & Dennis Lindley, 2013. "Mean-Variance and Expected Utility: The Borch Paradox," Papers 1306.2728, arXiv.org.
    3. Michael J. Best & Xili Zhang, 2011. "Degeneracy Resolution for Bilinear Utility Functions," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 615-634, September.
    4. George Yungchih Wang, 2012. "Evaluating an Investment Project in an Incomplete Market," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 4(1), pages 055-073, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Björn Hagströmer & Richard G. Anderson & Jane M. Binner & Thomas Elger & Birger Nilsson, 2008. "Mean–Variance Versus Full‐Scale Optimization: Broad Evidence For The Uk," Manchester School, University of Manchester, vol. 76(s1), pages 134-156, September.
    2. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    3. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    4. Lambert, M. & Hübner, G., 2013. "Comoment risk and stock returns," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 191-205.
    5. Briec, Walter & Kerstens, Kristiaan, 2010. "Portfolio selection in multidimensional general and partial moment space," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 636-656, April.
    6. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    7. David Allen & Stephen Satchell & Colin Lizieri, 2024. "Quantifying the non-Gaussian gain," Journal of Asset Management, Palgrave Macmillan, vol. 25(1), pages 1-18, February.
    8. Haim Levy, 2010. "The CAPM is Alive and Well: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 16(1), pages 43-71, January.
    9. Bjorn Hagstromer & Jane Binner, 2009. "Stock portfolio selection with full-scale optimization and differential evolution," Applied Financial Economics, Taylor & Francis Journals, vol. 19(19), pages 1559-1571.
    10. Krüger, Jens J., 2021. "Nonparametric portfolio efficiency measurement with higher moments," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 130825, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.
    12. Prakash, Arun J. & Chang, Chun-Hao & Pactwa, Therese E., 2003. "Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets," Journal of Banking & Finance, Elsevier, vol. 27(7), pages 1375-1390, July.
    13. Keith Vorkink & Douglas J. Hodgson & Oliver Linton, 2002. "Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 617-639.
    14. M. Glawischnig & I. Seidl, 2013. "Portfolio optimization with serially correlated, skewed and fat tailed index returns," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 153-176, January.
    15. Gourieroux, C. & Monfort, A., 2005. "The econometrics of efficient portfolios," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 1-41, January.
    16. Monica Billio & Bertrand Maillet & Loriana Pelizzon, 2022. "A meta-measure of performance related to both investors and investments characteristics," Annals of Operations Research, Springer, vol. 313(2), pages 1405-1447, June.
    17. Ergun, Lerby M., 2016. "Disaster and fortune risk in asset returns," LSE Research Online Documents on Economics 66194, London School of Economics and Political Science, LSE Library.
    18. Qu, Xiangyu, 2017. "Subjective mean–variance preferences without expected utility," Mathematical Social Sciences, Elsevier, vol. 87(C), pages 31-39.
    19. Houda Hafsa & Dorra Hmaied, 2012. "Are Downside Higher Order Co-Moments Priced? : Evidence From The French Market," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 6(1), pages 65-81.
    20. Smimou, K., 2014. "International portfolio choice and political instability risk: A multi-objective approach," European Journal of Operational Research, Elsevier, vol. 234(2), pages 546-560.

    More about this item

    Keywords

    Great Britain;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2007-016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Oates (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.