IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/1984-003.html
   My bibliography  Save this paper

On the treatment of the weighted initial observation in the AR(1) regression model

Author

Listed:
  • Daniel L. Thornton

Abstract

This note shows that the ordinary least squares estimator of a first-order autoregressive model is always more efficient relative to the Cochrane-Orcutt estimator if the autocorrelation process has a finite past than if its past is infinite. This result cast doubt on the usual suggestion that it might be better to delete the initial observation rather than weight it if the autocorrelation process has a finite past.

Suggested Citation

  • Daniel L. Thornton, 1984. "On the treatment of the weighted initial observation in the AR(1) regression model," Working Papers 1984-003, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:1984-003
    as

    Download full text from publisher

    File URL: http://research.stlouisfed.org/wp/1984/1984-003.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:1984-003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Oates (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.