IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2020-80.html
   My bibliography  Save this paper

Correcting for Endogeneity in Models with Bunching

Author

Abstract

We show that in models with endogeneity, bunching at the lower or upper boundary of the distribution of the treatment variable may be used to build a correction for endogeneity. We derive the asymptotic distribution of the parameters of the corrected model, provide an estimator of the standard errors, and prove the consistency of the bootstrap. An empirical application reveals that time spent watching television, corrected for endogeneity, has roughly no net effect on cognitive skills and a significant negative net effect on non-cognitive skills in children.

Suggested Citation

  • Carolina Caetano & Gregorio Caetano & Eric R. Nielsen, 2020. "Correcting for Endogeneity in Models with Bunching," Finance and Economics Discussion Series 2020-080, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2020-80
    DOI: 10.17016/FEDS.2020.080
    as

    Download full text from publisher

    File URL: https://www.federalreserve.gov/econres/feds/files/2020080pap.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2020.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bertanha, Marinho & McCallum, Andrew H. & Seegert, Nathan, 2023. "Better bunching, nicer notching," Journal of Econometrics, Elsevier, vol. 237(2).
    2. Carolina Caetano & Gregorio Caetano & Eric R. Nielsen, 2020. "Should Children Do More Enrichment Activities? Leveraging Bunching to Correct for Endogeneity," Finance and Economics Discussion Series 2020-036, Board of Governors of the Federal Reserve System (U.S.).
    3. Carolina Caetano & Gregorio Caetano & Hao Fe & Eric R. Nielsen, 2021. "A Dummy Test of Identification in Models with Bunching," Finance and Economics Discussion Series 2021-068, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    Keywords

    Bunching; Endogeneity; Bootstrap; Cross-sectional models; Childhood skill development; Clustering;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2020-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.