IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2018-56.html
   My bibliography  Save this paper

A Shadow Rate or a Quadratic Policy Rule? The Best Way to Enforce the Zero Lower Bound in the United States

Author

Listed:

Abstract

We study whether it is better to enforce the zero lower bound (ZLB) in models of U.S. Treasury yields using a shadow rate model or a quadratic term structure model. We show that the models achieve a similar in-sample fit and perform comparably in matching conditional expectations of future yields. However, when the recent ZLB period is included in the sample, the models ' ability to match conditional expectations away from the ZLB deteriorates because the time-series{{p}}dynamics of the pricing factors change. In addition, neither model provides a reasonable description of conditional volatilities when yields are away from the ZLB.

Suggested Citation

  • Martin M. Andreasen & Andrew C. Meldrum, 2018. "A Shadow Rate or a Quadratic Policy Rule? The Best Way to Enforce the Zero Lower Bound in the United States," Finance and Economics Discussion Series 2018-056, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2018-56
    DOI: 10.17016/FEDS.2018.056
    as

    Download full text from publisher

    File URL: https://www.federalreserve.gov/econres/feds/files/2018056pap.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2018.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leippold, Markus & Wu, Liuren, 2002. "Asset Pricing under the Quadratic Class," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(2), pages 271-295, June.
    2. Jing Cynthia Wu & Fan Dora Xia, 2016. "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 253-291, March.
    3. Michael D. Bauer & Glenn D. Rudebusch & Jing Cynthia Wu, 2012. "Correcting Estimation Bias in Dynamic Term Structure Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 454-467, April.
    4. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2015. "Parametric Inference and Dynamic State Recovery From Option Panels," Econometrica, Econometric Society, vol. 83(3), pages 1081-1145, May.
    5. Adrian, Tobias & Crump, Richard K. & Moench, Emanuel, 2013. "Pricing the term structure with linear regressions," Journal of Financial Economics, Elsevier, vol. 110(1), pages 110-138.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Michael D. Bauer & Glenn D. Rudebusch, 2016. "Monetary Policy Expectations at the Zero Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(7), pages 1439-1465, October.
    8. John Y. Campbell & Robert J. Shiller, 1991. "Yield Spreads and Interest Rate Movements: A Bird's Eye View," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 495-514.
    9. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    10. Glenn D. Rudebusch & Tao Wu, 2007. "Accounting for a Shift in Term Structure Behavior with No‐Arbitrage and Macro‐Finance Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2‐3), pages 395-422, March.
    11. Jens H. E. Christensen & Glenn D. Rudebusch, 2015. "Estimating Shadow-Rate Term Structure Models with Near-Zero Yields," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 226-259.
    12. Kim, Don H. & Singleton, Kenneth J., 2012. "Term structure models and the zero bound: An empirical investigation of Japanese yields," Journal of Econometrics, Elsevier, vol. 170(1), pages 32-49.
    13. Andreasen, Martin M. & Christensen, Bent Jesper, 2015. "The SR approach: A new estimation procedure for non-linear and non-Gaussian dynamic term structure models," Journal of Econometrics, Elsevier, vol. 184(2), pages 420-451.
    14. Monfort, Alain & Pegoraro, Fulvio & Renne, Jean-Paul & Roussellet, Guillaume, 2017. "Staying at zero with affine processes: An application to term structure modelling," Journal of Econometrics, Elsevier, vol. 201(2), pages 348-366.
    15. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    16. Bruno Feunou & Jean-Sébastien Fontaine & Anh Le & Christian Lundblad, 2022. "Tractable Term Structure Models," Management Science, INFORMS, vol. 68(11), pages 8411-8429, November.
    17. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
    18. Realdon, Marco, 2006. "Quadratic term structure models in discrete time," Finance Research Letters, Elsevier, vol. 3(4), pages 277-289, December.
    19. Don H Kim, 2007. "Spanned stochastic volatility in bond markets: a reexamination of the relative pricing between bonds and bond options," BIS Working Papers 239, Bank for International Settlements.
    20. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    21. Dai, Qiang & Singleton, Kenneth J., 2002. "Expectation puzzles, time-varying risk premia, and affine models of the term structure," Journal of Financial Economics, Elsevier, vol. 63(3), pages 415-441, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    2. Christensen, Jens H.E. & Lopez, Jose A. & Mussche, Paul L., 2024. "International evidence on extending sovereign debt maturities," Journal of International Money and Finance, Elsevier, vol. 141(C).
    3. Peter Hördahl & Oreste Tristani, 2019. "Modelling yields at the lower bound through regime shifts," BIS Working Papers 813, Bank for International Settlements.
    4. Martin M. Andreasen & Kasper Joergensen & Andrew C. Meldrum, 2019. "Bond Risk Premiums at the Zero Lower Bound," Finance and Economics Discussion Series 2019-040, Board of Governors of the Federal Reserve System (U.S.).
    5. Martin Møller Andreasen & Kasper Jørgensen & Andrew Meldrum, 2019. "Bond Risk Premiums at the Zero Lower Bound," CREATES Research Papers 2019-10, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreasen, Martin M & Meldrum, Andrew, 2015. "Dynamic term structure models: the best way to enforce the zero lower bound in the United States," Bank of England working papers 550, Bank of England.
    2. Bruno Feunou & Jean-Sébastien Fontaine & Anh Le & Christian Lundblad, 2022. "Tractable Term Structure Models," Management Science, INFORMS, vol. 68(11), pages 8411-8429, November.
    3. Martin M. Andreasen & Andrew Meldrum, 2014. "Dynamic term structure models: The best way to enforce the zero lower bound," CREATES Research Papers 2014-47, Department of Economics and Business Economics, Aarhus University.
    4. Martin Møller Andreasen & Kasper Jørgensen & Andrew Meldrum, 2019. "Bond Risk Premiums at the Zero Lower Bound," CREATES Research Papers 2019-10, Department of Economics and Business Economics, Aarhus University.
    5. Martin M. Andreasen & Kasper Joergensen & Andrew C. Meldrum, 2019. "Bond Risk Premiums at the Zero Lower Bound," Finance and Economics Discussion Series 2019-040, Board of Governors of the Federal Reserve System (U.S.).
    6. Monfort, Alain & Pegoraro, Fulvio & Renne, Jean-Paul & Roussellet, Guillaume, 2017. "Staying at zero with affine processes: An application to term structure modelling," Journal of Econometrics, Elsevier, vol. 201(2), pages 348-366.
    7. Marcello Pericoli & Marco Taboga, 2022. "Nearly Exact Bayesian Estimation of Non-linear No-Arbitrage Term-Structure Models [Pricing the Term Structure with Linear Regressions]," Journal of Financial Econometrics, Oxford University Press, vol. 20(5), pages 807-838.
    8. Almeida, Caio & Graveline, Jeremy J. & Joslin, Scott, 2011. "Do interest rate options contain information about excess returns?," Journal of Econometrics, Elsevier, vol. 164(1), pages 35-44, September.
    9. Chung, Tsz-Kin & Hui, Cho-Hoi & Li, Ka-Fai, 2017. "Term-structure modelling at the zero lower bound: Implications for estimating the forward term premium," Finance Research Letters, Elsevier, vol. 21(C), pages 100-106.
    10. Peter Feldhütter, 2016. "Can Affine Models Match the Moments in Bond Yields?," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-56, June.
    11. Alfaro, Rodrigo & Piña, Marco, 2023. "Estimates of the US Shadow-Rate," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(1).
    12. Malik, Sheheryar & Meldrum, Andrew, 2016. "Evaluating the robustness of UK term structure decompositions using linear regression methods," Journal of Banking & Finance, Elsevier, vol. 67(C), pages 85-102.
    13. Tsz-Kin Chung & Cho-Hoi Hui & Ka-Fai Li, 2015. "Term-Structure Modelling at the Zero Lower Bound: Implications for Estimating the Term Premium," Working Papers 212015, Hong Kong Institute for Monetary Research.
    14. Luis Ceballos & Alberto Naudon & Damián Romero, 2016. "Nominal term structure and term premia: evidence from Chile," Applied Economics, Taylor & Francis Journals, vol. 48(29), pages 2721-2735, June.
    15. Yoichi Ueno, 2017. "Term Structure Models with Negative Interest Rates," IMES Discussion Paper Series 17-E-01, Institute for Monetary and Economic Studies, Bank of Japan.
    16. De Rezende, Rafael B. & Ristiniemi, Annukka, 2023. "A shadow rate without a lower bound constraint," Journal of Banking & Finance, Elsevier, vol. 146(C).
    17. Michael D. Bauer & Glenn D. Rudebusch, 2020. "Interest Rates under Falling Stars," American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.
    18. Berardi, Andrea & Plazzi, Alberto, 2022. "Dissecting the yield curve: The international evidence," Journal of Banking & Finance, Elsevier, vol. 134(C).
    19. Campbell, John Y. & Sunderam, Adi & Viceira, Luis M., 2017. "Inflation Bets or Deflation Hedges? The Changing Risks of Nominal Bonds," Critical Finance Review, now publishers, vol. 6(2), pages 263-301, September.
    20. Martin M. Andreasen & Tom Engsted & Stig V. Møller & Magnus Sander, 2016. "Bond Market Asymmetries across Recessions and Expansions: New Evidence on Risk Premia," CREATES Research Papers 2016-26, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Quadratic term structure models; Sequential regression approach; shadow rate models; Zero lower bound;
    All these keywords.

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2018-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.