IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2011-44.html
   My bibliography  Save this paper

Two practical algorithms for solving rational expectations models

Author

Listed:
  • Flint Brayton

Abstract

This paper describes the E-Newton and E-QNewton algorithms for solving rational expectations (RE) models. Both algorithms treat a model's RE terms as exogenous variables whose values are iteratively updated until they (hopefully) satisfy the RE requirement. In E-Newton, the updates are based on Newton's method; E-QNewton uses an efficient form of Broyden's quasi-Newton method. The paper shows that the algorithms are reliable, fast enough for practical use on a mid-range PC, and simple enough that their implementation does not require highly specialized software. The evaluation of the algorithms is based on experiments with three well-known macro models--the Smets-Wouters (SW) model, EDO, and FRB/US--using code written in EViews, a general-purpose, easy-to-use software package. The models are either linear (SW and EDO) or mildly nonlinear (FRB/US). A test of the robustness of the algorithms in the presence of substantial nonlinearity is based on modified versions of each model that include a smoothed form of the constraint that the short-term rate of interest cannot fall below zero. In two single-simulation experiments with the standard and modified versions of the models, E-QNewton is found to be faster than E-Newton, except for solutions of small-to-medium sized linear models. In a multi-simulation experiment using the standard versions of the models, E-Newton dominates E-QNewton.

Suggested Citation

  • Flint Brayton, 2011. "Two practical algorithms for solving rational expectations models," Finance and Economics Discussion Series 2011-44, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2011-44
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/feds/2011/201144/201144abs.html
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/feds/2011/201144/201144pap.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Hollinger, "undated". "The Stacked-Time Simulator in TROLL: A Robust Algorithm for Solving Forward-Looking Models," Computing in Economics and Finance 1996 _026, Society for Computational Economics.
    2. Fair, Ray C & Taylor, John B, 1983. "Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 51(4), pages 1169-1185, July.
    3. Anderson, Gary & Moore, George, 1985. "A linear algebraic procedure for solving linear perfect foresight models," Economics Letters, Elsevier, vol. 17(3), pages 247-252.
    4. Hall, S G, 1985. "On the Solution of Large Economic Models with Consistent Expectations," Bulletin of Economic Research, Wiley Blackwell, vol. 37(2), pages 157-161, May.
    5. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    6. Juillard, Michel, 1996. "Dynare : a program for the resolution and simulation of dynamic models with forward variables through the use of a relaxation algorithm," CEPREMAP Working Papers (Couverture Orange) 9602, CEPREMAP.
    7. Fisher, P. G. & Hallett, A. J. Hughes, 1988. "Efficient solution techniques for linear and non-linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 12(4), pages 635-657, November.
    8. Armstrong, John & Black, Richard & Laxton, Douglas & Rose, David, 1998. "A robust method for simulating forward-looking models," Journal of Economic Dynamics and Control, Elsevier, vol. 22(4), pages 489-501, April.
    9. Holly, S. & Zarrop, M. B., 1983. "On optimality and time consistency when expectations are rational," European Economic Review, Elsevier, vol. 20(1-3), pages 23-40, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juillard, Michel & Laxton, Douglas & McAdam, Peter & Pioro, Hope, 1998. "An algorithm competition: First-order iterations versus Newton-based techniques," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1291-1318, August.
    2. Lemoine, Matthieu & Lindé, Jesper, 2023. "Fiscal stimulus in liquidity traps: Conventional or unconventional policies?," European Economic Review, Elsevier, vol. 151(C).
    3. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    4. Ajevskis Viktors, 2017. "Semi-global solutions to DSGE models: perturbation around a deterministic path," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(2), pages 1-28, April.
    5. Viktors Ajevskis, 2019. "Generalised Impulse Response Function as a Perturbation of a Global Solution to DSGE Models," Working Papers 2019/04, Latvijas Banka.
    6. Eric Jondeau & Grégory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2022. "Environmental Subsidies to Mitigate Transition risk," Working Papers hal-04159804, HAL.
    7. Andrew Hodge & Zoltan Jakab & Jesper Lindé & Vina Nguyen, 2022. "U.S. and Euro Area Monetary and Fiscal Interactions During the Pandemic: A Structural Analysis," IMF Working Papers 2022/222, International Monetary Fund.
    8. Jesper Lindé & Mathias Trabandt, 2018. "Should we use linearized models to calculate fiscal multipliers?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 937-965, November.
    9. Wieland, Volker & Cwik, Tobias & Müller, Gernot J. & Schmidt, Sebastian & Wolters, Maik, 2012. "A new comparative approach to macroeconomic modeling and policy analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 523-541.
    10. Armstrong, John & Black, Richard & Laxton, Douglas & Rose, David, 1998. "A robust method for simulating forward-looking models," Journal of Economic Dynamics and Control, Elsevier, vol. 22(4), pages 489-501, April.
    11. Yongyang Cai & Kenneth L. Judd, 2023. "A simple but powerful simulated certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 14(2), pages 651-687, May.
    12. Stefan Laséen & Lars E.O. Svensson, 2011. "Anticipated Alternative policy Rate Paths in Plicy Simulations," International Journal of Central Banking, International Journal of Central Banking, vol. 7(3), pages 1-35, September.
    13. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    14. Eric Jondeau & Grégory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2023. "Environmental Subsidies to Mitigate Net-Zero Transition Costs," Working papers 910, Banque de France.
    15. David Kendrick & Hans Amman, 2006. "A Classification System for Economic Stochastic Control Models," Computational Economics, Springer;Society for Computational Economics, vol. 27(4), pages 453-481, June.
    16. Günter Coenen & Anders Warne, 2014. "Risks to Price Stability, the Zero Lower Bound, and Forward Guidance: A Real-Time Assessment," International Journal of Central Banking, International Journal of Central Banking, vol. 10(2), pages 7-54, June.
    17. Harding, Martín & Lindé, Jesper & Trabandt, Mathias, 2022. "Resolving the missing deflation puzzle," Journal of Monetary Economics, Elsevier, vol. 126(C), pages 15-34.
    18. Bodenstein, Martin & Guerrieri, Luca & Gust, Christopher J., 2013. "Oil shocks and the zero bound on nominal interest rates," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 941-967.
    19. Harding, Martín & Lindé, Jesper & Trabandt, Mathias, 2023. "Understanding post-COVID inflation dynamics," Journal of Monetary Economics, Elsevier, vol. 140(S), pages 101-118.
    20. Fujiwara, Ippei & Hara, Naoko & Hirose, Yasuo & Teranishi, Yuki, 2005. "The Japanese Economic Model (JEM)," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 23(2), pages 61-142, May.

    More about this item

    Keywords

    Rational expectations (Economic theory);

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2011-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.