Author
Listed:
- Firpo, Sergio Pinheiro
- Pinto, Rafael de Carvalho Cayres
Abstract
Uma ferramenta importante na avaliação de políticas econômicas é a estimação do efeito médio de um programa ou tratamento sobre uma variável de interesse. Em geral, a atribuição do tratamento aos potenciais participantes não é aleatória, o que pode causar viés de seleção quando desconsiderada. Uma maneira de resolver esse problema é supor que o econometrista observa um conjunto de características determinantes, a menos de um componente estritamente aleatório, da participação. Sob esta hipótese, existem na literatura estimadores semiparamétricos do efeito médio do tratamento que são consistentes e capazes de atingir, assintoticamente, o limite de e ciência semiparamétrico. Entretanto, nas amostras freqüentemente disponíveis, o desempenho desses métodos nem sempre é satisfatório. O objetivo deste trabalho é estudar como a combinação das duas estratégias pode produzir estimadores com melhores propriedades em amostras pequenas. Para isto, consideramos duas formas de integrar essas abordagens, tendo como referencial teórico a literatura de estimação duplamente robusta desenvolvida por James Robins e co-autores. Analisamos suas propriedades e discutimos por que podem superar o uso isolado de cada uma das técnicas que os compõem. Finalmente, comparamos, num exercício de Monte Carlo, o desempenho desses estimadores com os de imputação e reponderação. Os resultados mostram que a combinação de estratégias pode reduzir o viés e a variância, mas isso depende da forma como é implementada. Concluímos que a escolha dos parâmetros de suavização é decisiva para o desempenho da estimação em amostras de tamanho moderado.
Suggested Citation
Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2013.
"Combinando estratégias para estimação de efeitos de tratamento,"
Textos para discussão
332, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
Handle:
RePEc:fgv:eesptd:332
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fgv:eesptd:332. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/eegvfbr.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.