IDEAS home Printed from https://ideas.repec.org/p/fgv/eesptd/313.html
   My bibliography  Save this paper

Modelagem e previsão de volatilidade realizada: evidências para o Brasil

Author

Listed:
  • Wink Junior, Marcos Vinício
  • Pereira, Pedro L. Valls

Abstract

Usando dados intradiários dos ativos mais negociados do BOVESPA, este trabalho considerou dois modelos recentemente desenvolvidos na literatura de estimação e previsão de volatilidade realizada. São eles; Heterogeneous Autorregressive Model of Realized Volatility (HAR-RV), desenvolvido por Corsi (2009) e o Mixed Data Sampling (MIDAS-RV), desenvolvido por Ghysels et al. (2004). Através de medidas de comparação de previsão dentro e fora da amostra, constatou-se resultados superiores do modelo MIDAS-RV apenas para previsões dentro da amostra. Para previsões fora da amostra, no entanto, não houve diferença estatisticamente significativa entre os modelos. Também encontram-se evidências que a utilização da volatilidade realizada induz distribuições dos retornos padronizados mais próximas da normal

Suggested Citation

  • Wink Junior, Marcos Vinício & Pereira, Pedro L. Valls, 2012. "Modelagem e previsão de volatilidade realizada: evidências para o Brasil," Textos para discussão 313, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
  • Handle: RePEc:fgv:eesptd:313
    as

    Download full text from publisher

    File URL: https://repositorio.fgv.br/bitstreams/488f2a92-8516-4b32-b454-d2ce7d70a62e/download
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Márcio Gomes Pinto Garcia & Marcelo Cunha Medeiros & Francisco Eduardo de Luna e Almeida Santos, 2014. "Economic gains of realized volatility in the Brazilian stock market," Brazilian Review of Finance, Brazilian Society of Finance, vol. 12(3), pages 319-349.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fgv:eesptd:313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/eegvfbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.