IDEAS home Printed from https://ideas.repec.org/p/fda/fdaddt/2025-02.html
   My bibliography  Save this paper

Machine Learning for Applied Economic Analysis: Gaining Practical Insights

Author

Listed:
  • Matthew Smith
  • Francisco Alvarez

Abstract

Machine learning (ML) is becoming an essential tool in economics, offering powerful methods for prediction, classification, and decision-making. This paper provides an intuitive introduction to two widely used families of ML models: tree-based methods (decision trees, Random Forests, boosting techniques) and neural networks. The goal is to equip practitioners with a clear understanding of how these models work, their strengths and limitations, and their applications in economics. Additionally, we briefly discuss some other methods, as support vector machines (SVMs) and Shapley values, highlighting their relevance in economic research. Rather than providing an exhaustive survey, this paper focuses on practical insights to help economists effectively apply ML in their work.

Suggested Citation

  • Matthew Smith & Francisco Alvarez, 2025. "Machine Learning for Applied Economic Analysis: Gaining Practical Insights," Working Papers 2025-03, FEDEA.
  • Handle: RePEc:fda:fdaddt:2025-02
    as

    Download full text from publisher

    File URL: https://documentos.fedea.net/pubs/dt/2025/dt2025-02.pdf
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fda:fdaddt:2025-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carmen Arias (email available below). General contact details of provider: https://www.fedea.net .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.