Author
Abstract
We introduce and evaluate mixed-frequency multivariate GARCH models for forecasting low-frequency (weekly or monthly) multivariate volatility based on high-frequency intra-day returns (at five-minute intervals) and on the overnight returns. The low-frequency conditional volatility matrix is modelled as a weighted sum of an intra-day and an overnight component, driven by the intra-day and the overnight returns, respectively. The components are specified as multivariate GARCH (1,1) models of the BEKK type, adapted to the mixed-frequency data setting. For the intra-day component, the squared high-frequency returns enter the GARCH model through a parametrically specified mixed-data sampling (MIDAS) weight function or through the sum of the intra-day realized volatilities. For the overnight component, the squared overnight returns enter the model with equal weights. Alternatively, the low-frequency conditional volatility matrix may be modelled as a single-component BEKK-GARCH model where the overnight returns and the high-frequency returns enter through the weekly realized volatility (defined as the unweighted sum of squares of overnight and high-frequency returns), or where the overnight returns are simply ignored. All model variants may further be extended by allowing for a non-parametrically estimated slowly-varying long-run volatility matrix. The proposed models are evaluated using five-minute and overnight return data on four DJIA stocks (AXP, GE, HD, and IBM) from January 1988 to November 2014. The focus is on forecasting weekly volatilities (defined as the low frequency). The mixed-frequency GARCH models are found to systematically dominate the low-frequency GARCH model in terms of in-sample fit and out-of-sample forecasting accuracy. They also exhibit much lower low-frequency volatility persistence than the low-frequency GARCH model. Among the mixed-frequency models, the low-frequency persistence estimates decrease as the data frequency increases from daily to five-minute frequency, and as overnight returns are included. That is, ignoring the available high-frequency information leads to spuriously high volatility persistence. Among the other findings are that the single-component model variants perform worse than the two-component variants; that the overnight volatility component exhibits more persistence than the intra-day component; and that MIDAS weighting performs better than not weighting at all (i.e., than realized volatility).
Suggested Citation
Geert Dhaene & Jianbin Wu, 2016.
"Mixed-frequency multivariate GARCH,"
Working Papers of Department of Economics, Leuven
544330, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
Handle:
RePEc:ete:ceswps:544330
Note: paper number DPS16.12
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ete:ceswps:544330. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library EBIB (email available below). General contact details of provider: https://feb.kuleuven.be/Economics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.