IDEAS home Printed from https://ideas.repec.org/p/era/wpaper/dp-2023-24.html
   My bibliography  Save this paper

Quantitative Analysis of Optimal Investment Scale and Timing for Flood Control Measures by Multi-Regional Economic Growth Model: Case Studies in Viet Nam

Author

Listed:
  • Hiroaki Ishiwata

    (Pacific Consultants Co., Ltd., Tokyo, Japan)

  • Masashi Sakamoto

    (Tohoku University)

  • Makoto Ikeda

    (Kobe University)

  • Venkatachalam Anbumozhi

    (Economic Research Institute for ASEAN and East Asia (ERIA))

Abstract

This study aims to develop and utilise a multi-regional economic growth model that can take into account flood damage and investment in disaster risk reduction, and, through case studies in Viet Nam, quantitatively analyse the long-term effects of investment in disaster risk reduction on the national and local economy, as well as the optimal scale and timing of investments in flood protection, to gain a better overview of these factors. The results indicate that additional investment in disaster risk reduction could stimulate economic growth, and that the optimal range of the disaster risk reduction budget rate was around 0.3% to 0.5% of GDP, assuming a constant budget rate throughout the total 25-year calculation period. In the case of a variable disaster risk reduction budget rate, we observed that a variable budget rate that gradually reduces the disaster risk reduction budget rate from a higher level than the current rate could further promote economic growth than if the budget rate were fixed. In both cases, we verified that with excessive investment in disaster risk reduction, the high tax burden had the risk of reducing investment in production capital and lead to stagnating economic growth. By region, the long-term effects of investment in disaster risk reduction were most seen in the Central region, where the rate of flood damage is the highest.

Suggested Citation

  • Hiroaki Ishiwata & Masashi Sakamoto & Makoto Ikeda & Venkatachalam Anbumozhi, 2024. "Quantitative Analysis of Optimal Investment Scale and Timing for Flood Control Measures by Multi-Regional Economic Growth Model: Case Studies in Viet Nam," Working Papers DP-2023-24, Economic Research Institute for ASEAN and East Asia (ERIA).
  • Handle: RePEc:era:wpaper:dp-2023-24
    as

    Download full text from publisher

    File URL: https://www.eria.org/uploads/Quantitative-Analysis-of-Optimal-Investment-Scale.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hallegatte, Stephane & Hourcade, Jean-Charles & Dumas, Patrice, 2007. "Why economic dynamics matter in assessing climate change damages: Illustration on extreme events," Ecological Economics, Elsevier, vol. 62(2), pages 330-340, April.
    2. Hiroaki Ishiwata & Muneta Yokomatsu, 2018. "Dynamic Stochastic Macroeconomic Model of Disaster Risk Reduction Investment in Developing Countries," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2424-2440, November.
    3. Hallegatte, Stéphane & Ghil, Michael, 2008. "Natural disasters impacting a macroeconomic model with endogenous dynamics," Ecological Economics, Elsevier, vol. 68(1-2), pages 582-592, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asjad Naqvi & Franziska Gaupp & Stefan Hochrainer-Stigler, 2020. "The risk and consequences of multiple breadbasket failures: an integrated copula and multilayer agent-based modeling approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 727-754, September.
    2. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    3. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    4. Stéphane Hallegatte & Valentin Przyluski, 2010. "The Economics of Natural Disasters," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(02), pages 14-24, July.
    5. Gregory, Richard P., 2021. "Climate disasters, carbon dioxide, and financial fundamentals," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 45-58.
    6. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    7. Stéphane Hallegatte & Valentin Przyluski, 2010. "The Economics of Natural Disasters," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(2), pages 14-24, July.
    8. Jochen Hinkel & Detlef Vuuren & Robert Nicholls & Richard Klein, 2013. "The effects of adaptation and mitigation on coastal flood impacts during the 21st century. An application of the DIVA and IMAGE models," Climatic Change, Springer, vol. 117(4), pages 783-794, April.
    9. Naqvi, Asjad, 2017. "Deep Impact: Geo-Simulations as a Policy Toolkit for Natural Disasters," World Development, Elsevier, vol. 99(C), pages 395-418.
    10. Wenzel, Lars & Wolf, André, 2013. "Protection against major catastrophes: An economic perspective," HWWI Research Papers 137, Hamburg Institute of International Economics (HWWI).
    11. Hallegatte, Stéphane & Jooste, Charl & McIsaac, Florent, 2024. "Modeling the macroeconomic consequences of natural disasters: Capital stock, recovery dynamics, and monetary policy," Economic Modelling, Elsevier, vol. 139(C).
    12. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    13. M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.
    14. Hiroaki Ishiwata & Muneta Yokomatsu, 2018. "Dynamic Stochastic Macroeconomic Model of Disaster Risk Reduction Investment in Developing Countries," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2424-2440, November.
    15. Christian L. E. Franzke, 2017. "Impacts of a Changing Climate on Economic Damages and Insurance," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 95-110, June.
    16. Andreas Groth & Patrice Dumas & Michael Ghil & Stéphane Hallegatte, 2015. "Impacts of Natural Disasters on a Dynamic Economy," Post-Print hal-01678074, HAL.
    17. Alex Bowen & Sarah Cochrane & Samuel Fankhauser, 2012. "Climate change, adaptation and economic growth," Climatic Change, Springer, vol. 113(2), pages 95-106, July.
    18. Hallegatte,Stephane & Bangalore,Mook & Jouanjean,Marie Agnes, 2016. "Higher losses and slower development in the absence of disaster risk management investments," Policy Research Working Paper Series 7632, The World Bank.
    19. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    20. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.

    More about this item

    Keywords

    disaster risk reduction investment; extensive flood risk; multi-regional economic growth model; Viet Nam;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • H21 - Public Economics - - Taxation, Subsidies, and Revenue - - - Efficiency; Optimal Taxation
    • H54 - Public Economics - - National Government Expenditures and Related Policies - - - Infrastructures
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • O53 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Asia including Middle East
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:era:wpaper:dp-2023-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ranti Amelia (email available below). General contact details of provider: https://edirc.repec.org/data/eriadid.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.