IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/56.html
   My bibliography  Save this paper

Generalizing Refinement Operators to Learn Prenex Conjunctive Normal Forms

Author

Listed:
  • Nienhuys-Cheng, S-H.
  • van Laer, W.
  • Ramon, J.
  • de Raedt, L.

Abstract

Inductive Logic Programming considers almost exclusively universally quantied theories. To add expressiveness, prenex conjunctive normal forms (PCNF) with existential variables should also be considered. ILP mostly uses learning with refinement operators. To extend refinement operators to PCNF, we should first do so with substitutions. However, applying a classic substitution to a PCNF with existential variables, one often obtains a generalization rather than a specialization. In this article we define substitutions that specialize a given PCNF and a weakly complete downward refinement operator. Moreover, we analyze the complexities of this operator in different types of languages and search spaces. In this way we lay a foundation for learning systems on PCNF. Based on this operator, we have implemented a simple learning system PCL on some type of PCNF.

Suggested Citation

  • Nienhuys-Cheng, S-H. & van Laer, W. & Ramon, J. & de Raedt, L., 2000. "Generalizing Refinement Operators to Learn Prenex Conjunctive Normal Forms," ERIM Report Series Research in Management ERS-2000-39-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:56
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/56/erimrs20001116130851.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    PCNF; completeness; learning; refinement; substitutions;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.