IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/220.html
   My bibliography  Save this paper

Sales Models For Many Items Using Attribute Data

Author

Listed:
  • van Nierop, J.E.M.
  • Fok, D.
  • Franses, Ph.H.B.F.

Abstract

Sales models are mainly used to analyze markets with a fairly small number of items, obtained after aggregating to the brand level. In practice one may require analyses at a more disaggregate level. For example, brand managers may be interested in a comparison across product attributes. For such an analysis the number of relevant items in the product category make commonly used sales models difficult to use as they would contain too many parameters. In this paper we propose a new model, which allows for the analysis of a market with many items while using only a moderate number of easily interpretable parameters. This is achieved by writing the sales model as a Hierarchical Bayes model. In this way we relate the marketing-mix effectiveness to item characteristics such as brand, package size, package type and shelf position. In this specification we do not have to impose restrictions on the competitive structure, as all items are allowed to have different own and cross elasticities. The parameters in the model are estimated using Markov Chain Monte Carlo techniques. As a by-product this model allows to make predictions of sales levels and marketing-mix effectiveness of new to introduce items or of attribute changes. For example, one can assess the impact of changing the packaging from plastic to glass, on sales and price elasticity. Besides entering and changing products, our model also allows for items to leave the market. We consider the representation, specification and estimation of the model. We apply the model to a ketchup scanner data set with 23 items at the chain level. Our results indicate that the model fits the sales of most items very well.

Suggested Citation

  • van Nierop, J.E.M. & Fok, D. & Franses, Ph.H.B.F., 2002. "Sales Models For Many Items Using Attribute Data," ERIM Report Series Research in Management ERS-2002-65-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:220
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/220/erimrs20020902120413.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franses, Philip Hans, 2006. "Forecasting in Marketing," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 18, pages 983-1012, Elsevier.
    2. Paul H. Jensen & Elizabeth Webster, 2008. "Labelling Characteristics And Demand For Retail Grocery Products In Australia," Australian Economic Papers, Wiley Blackwell, vol. 47(2), pages 129-140, June.

    More about this item

    Keywords

    Markov Chain Monte Carlo; SKU level analysis; attribute data; hierarchical bayes; sales models;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.