IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/1802.html
   My bibliography  Save this paper

Genetic Algorithms in Supply Chain Scheduling of Ready-Mixed Concrete

Author

Listed:
  • Naso, D.
  • Surico, M.
  • Turchiano, B.
  • Kaymak, U.

Abstract

The coordination of just-in-time production and transportation in a network of partially independent facilities to guarantee timely delivery to distributed customers is one of the most challenging aspects of supply chain management. From the theoretical perspective, the timely production/distribution can be viewed as a hybrid combination of planning, scheduling and routing problem, each notoriously affected by nearly prohibitive combinatorial complexity. From a practical viewpoint, the problem calls for a trade-off between risks and profits. This paper focuses on the ready-made concrete delivery: in addition to the mentioned complexity, strict time-constraints forbid both earliness and lateness of the supply. After developing a detailed model of the considered problem, we propose a novel meta-heuristic approach based on a hybrid genetic algorithm combined with constructive heuristics. A detailed case study derived from industrial data is used to illustrate the potential of the proposed approach.

Suggested Citation

  • Naso, D. & Surico, M. & Turchiano, B. & Kaymak, U., 2004. "Genetic Algorithms in Supply Chain Scheduling of Ready-Mixed Concrete," ERIM Report Series Research in Management ERS-2004-096-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:1802
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1802/ERS%202004%20096%20LIS.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asbach, Lasse & Dorndorf, Ulrich & Pesch, Erwin, 2009. "Analysis, modeling and solution of the concrete delivery problem," European Journal of Operational Research, Elsevier, vol. 193(3), pages 820-835, March.
    2. Chi, Hoi-Ming & Ersoy, Okan K. & Moskowitz, Herbert & Ward, Jim, 2007. "Modeling and optimizing a vendor managed replenishment system using machine learning and genetic algorithms," European Journal of Operational Research, Elsevier, vol. 180(1), pages 174-193, July.
    3. Surico, M. & Kaymak, U. & Naso, D. & Dekker, R., 2006. "Hybrid Meta-Heuristics for Robust Scheduling," ERIM Report Series Research in Management ERS-2006-018-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    More about this item

    Keywords

    concrete delivery; genetic algorithms; meta-heuristics; supply chain management;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:1802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.