IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/14275.html
   My bibliography  Save this paper

Multi-Factor Policy Evaluation and Selection in the One-Sample Situation

Author

Listed:
  • Chen, C.M.

Abstract

Firms nowadays need to make decisions with fast information obsolesce. In this paper I deal with one class of decision problems in this situation, called the “one-sample” problems: we have finite options and one sample of the multiple criteria with which we use to evaluate those options. I develop evaluation procedures based on bootstrapping DEA (Data Envelopment Envelopment) and the related decision-making methods. This paper improves the bootstrap procedure proposed by Simar and Wilson (1998) and shows how to exploit information from bootstrap outputs for decision-making.

Suggested Citation

  • Chen, C.M., 2008. "Multi-Factor Policy Evaluation and Selection in the One-Sample Situation," ERIM Report Series Research in Management ERS-2008-084-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:14275
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/14275/ERS-2008-084-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. P. Royston, 1983. "Some Techniques for Assessing Multivarate Normality Based on the Shapiro‐Wilk W," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(2), pages 121-133, June.
    2. Tsybakov, A.B. & Korostelev, A.P. & Simar, L., 1992. "Efficient Estimation of Monotone Boundaries," Papers 9209, Catholique de Louvain - Institut de statistique.
    3. Green, Rodney H. & Doyle, John R. & Cook, Wade D., 1996. "Preference voting and project ranking using DEA and cross-evaluation," European Journal of Operational Research, Elsevier, vol. 90(3), pages 461-472, May.
    4. Simar, Leopold & Wilson, Paul W., 1999. "Estimating and bootstrapping Malmquist indices," European Journal of Operational Research, Elsevier, vol. 115(3), pages 459-471, June.
    5. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    6. C A K Lovell & A P B Rouse, 2003. "Equivalent standard DEA models to provide super-efficiency scores," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 101-108, January.
    7. Talluri, Srinivas & Narasimhan, Ram, 2004. "A methodology for strategic sourcing," European Journal of Operational Research, Elsevier, vol. 154(1), pages 236-250, April.
    8. Korostelev, A. P. & Simar, L. & Tsybakov, A. B., 1995. "Estimation of monotone boundaries," LIDAM Reprints CORE 1178, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Muhittin Oral & Ossama Kettani & Pascal Lang, 1991. "A Methodology for Collective Evaluation and Selection of Industrial R&D Projects," Management Science, INFORMS, vol. 37(7), pages 871-885, July.
    10. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    11. Kleinsorge, Ilene K. & Schary, Philip B. & Tanner, Ray D., 1992. "Data Envelopment Analysis for monitoring customer-supplier relationships," Journal of Accounting and Public Policy, Elsevier, vol. 11(4), pages 357-372.
    12. L. J. Bourgeois, III & Kathleen M. Eisenhardt, 1988. "Strategic Decision Processes in High Velocity Environments: Four Cases in the Microcomputer Industry," Management Science, INFORMS, vol. 34(7), pages 816-835, July.
    13. N. J. Jobst & M. D. Horniman & C. A. Lucas & G. Mitra, 2001. "Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 489-501.
    14. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    15. D K Despotis, 2002. "Improving the discriminating power of DEA: focus on globally efficient units," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(3), pages 314-323, March.
    16. Arnd Huchzermeier & Christoph H. Loch, 2001. "Project Management Under Risk: Using the Real Options Approach to Evaluate Flexibility in R...D," Management Science, INFORMS, vol. 47(1), pages 85-101, January.
    17. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2006. "Introduction to Data Envelopment Analysis and Its Uses," Springer Books, Springer, number 978-0-387-29122-2, February.
    18. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    2. Chien-Ming Chen & Joe Zhu, 2011. "Efficient Resource Allocation via Efficiency Bootstraps: An Application to R&D Project Budgeting," Operations Research, INFORMS, vol. 59(3), pages 729-741, June.
    3. Oral, Muhittin, 2010. "E-DEA: Enhanced data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 207(2), pages 916-926, December.
    4. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    5. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    6. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    7. Liang, Liang & Wu, Jie & Cook, Wade D. & Zhu, Joe, 2008. "Alternative secondary goals in DEA cross-efficiency evaluation," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1025-1030, June.
    8. Dariush Khezrimotlagh & Wade D. Cook & Joe Zhu, 2021. "Number of performance measures versus number of decision making units in DEA," Annals of Operations Research, Springer, vol. 303(1), pages 529-562, August.
    9. Tortosa-Ausina, Emili & Grifell-Tatje, Emili & Armero, Carmen & Conesa, David, 2008. "Sensitivity analysis of efficiency and Malmquist productivity indices: An application to Spanish savings banks," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1062-1084, February.
    10. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    11. Sokol, Ondřej & Frýd, Lukáš, 2023. "DEA efficiency in agriculture: Measurement unit issues," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    12. Aggelopoulos, Eleftherios & Georgopoulos, Antonios, 2017. "Bank branch efficiency under environmental change: A bootstrap DEA on monthly profit and loss accounting statements of Greek retail branches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1170-1188.
    13. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    14. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "On the choice of weights profiles in cross-efficiency evaluations," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1564-1572, December.
    15. Ohene-Asare, Kwaku & Turkson, Charles & Afful-Dadzie, Anthony, 2017. "Multinational operation, ownership and efficiency differences in the international oil industry," Energy Economics, Elsevier, vol. 68(C), pages 303-312.
    16. William C. Horrace & Peter Schmidt, 2002. "Confidence Statements for Efficiency Estimates from Stochastic Frontier Models," Econometrics 0206006, University Library of Munich, Germany.
    17. C Murillo-Melchor & J M Pastor & E Tortosa-Ausina, 2010. "A bootstrap approach to analyse productivity growth in European banking," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(12), pages 1729-1745, December.
    18. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    19. Fadzlan Sufian & Fakarudin Kamarudin, 2014. "The impact of ownership structure on bank productivity and efficiency: Evidence from semi-parametric Malmquist Productivity Index," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-27, December.
    20. Alois Kneip & Léopold Simar & Paul Wilson, 2011. "A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 483-515, November.

    More about this item

    Keywords

    R&D project; bootstrap; data envelopment analysis; multiple criteria; parametric transformation; supplier selection;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:14275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.