IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/594.html
   My bibliography  Save this paper

The correlation between the convergence of subdivision processes and solvability of refinement equations

Author

Listed:
  • Protassov, V.

Abstract

We consider a univariate two-scale difference equation, which is studied in approximation theory, curve design and wavelets theory. This paper analysis the correlation between the existence of smooth compactly supported solutions of this equation and the convergence of the corresponding cascade algorithm/subdivision scheme. We introduce a criterion that expresses this correlation in terms of mask of the equation. It was shown that the convergence of subdivision scheme depends on values that the mask takes at the points of its generalized cycles. In this paper we show that the criterion is sharp in the sense that an arbitrary generalized cycle causes the divergence of a suitable subdivision scheme. To do this we construct a general method to produce divergent subdivision schemes having smooth refinable functions. The criterion therefore establishes a complete classification of divergent subdivision schemes.

Suggested Citation

  • Protassov, V., 2001. "The correlation between the convergence of subdivision processes and solvability of refinement equations," Econometric Institute Research Papers EI 2001-45, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:594
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/594/feweco20011214153209.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.