IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1564.html
   My bibliography  Save this paper

An adaptive optimal estimate of the tail index for MA(1) time series

Author

Listed:
  • Geluk, J.L.
  • Peng, L.

Abstract

For samples of random variables with a regularly varying tail estimating the tail index has received much attention recently. For the proof of asymptotic normality of the tail index estimator second order regular variation is needed. In this paper we first supplement earlier results on convolution given by Geluk et al. (1997). Secondly we propose a simple estimator of the tail index for finite moving average time series. We also give a subsampling procedure in order to estimate the optimal sample fraction in the sense of minimal mean squared error.

Suggested Citation

  • Geluk, J.L. & Peng, L., 1999. "An adaptive optimal estimate of the tail index for MA(1) time series," Econometric Institute Research Papers EI 9910-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1564
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaap Geluk & Liang Peng & Casper G. de Vries, 1999. "Convolutions of Heavy Tailed Random Variables and Applications to Portfolio Diversification and MA(1) Time Series," Tinbergen Institute Discussion Papers 99-088/2, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.