IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1528.html
   My bibliography  Save this paper

Minimax results and finite dimensional separation

Author

Listed:
  • Frenk, J.B.G.
  • Kassay, G.

Abstract

In this paper we review and unify some of the classes of generalized convex functions introduced by different authors to prove minimax results in infinite dimensional spaces and show the relations between those classes. We also list for the most general class already introduced by Jeyakumar an elementary proof of a minimax result. The proof of this result only uses a finite dimensional separation theorem and although this minimax result is already presented by Neumann and independently Jeyakumar we believe that the present proof is shorter and more transparent.

Suggested Citation

  • Frenk, J.B.G. & Kassay, G., 1998. "Minimax results and finite dimensional separation," Econometric Institute Research Papers EI 9845, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1528
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    dimensional separation; minimax results;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.