IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1524.html
   My bibliography  Save this paper

Conditional densities in econometrics

Author

Listed:
  • Kleibergen, F.R.

Abstract

Statistical inference in nested linear models that result from linear restrictions on the parameters of encompassing linear models can be considered to result from the conditional distribution under the encompassing model. We extend this reasoning to nested models that result from general (nonlinear) restrictions by defining sufficient conditions that, when satisfied by the random variables and the restrictions, ensure the existence of an unique expression of the conditional density. Statistical inference in these nested models can then be considered to result from such a conditional density. This novel manner of conducting statistical analyzes leads both to some new results and allows one to obtain some already known results in a different manner. In Bayesian statistics, the conditional densities show how to construct specific classes of priors for the parameters of nested models, priors on the parameters of encompassing models that imply an already specified prior on the parameters of the nested model, Bayes factors using (generalized) Savage-Dickey density ratios and Bayesian score statistics. In classical statistical analysis, the conditional densities offer an alternative approach for constructing small sample and limiting distributions of maximum likelihood estimators and classical score statistics.

Suggested Citation

  • Kleibergen, F.R., 1998. "Conditional densities in econometrics," Econometric Institute Research Papers EI 9853, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1524
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanming Gao & Kajal Lahiri, 2000. "A Comparison of Some Recent Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometric Society World Congress 2000 Contributed Papers 0230, Econometric Society.
    2. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    3. Chuanming Gao & Kajal Lahiri, 2019. "A Comparison of Some Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometrics, MDPI, vol. 7(3), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.