On the Calculation of the Stability Radius of an Optimal or an Approximate Schedule
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sotskov, Y. & Sotskova, N. Y. & Werner, F., 1997. "Stability of an optimal schedule in a job shop," Omega, Elsevier, vol. 25(4), pages 397-414, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nilotpal Chakravarti & Albert P.M. Wagelmans, 1997. "Calculation of Stability Radii for Combinatorial Optimization Problems," Tinbergen Institute Discussion Papers 97-106/4, Tinbergen Institute.
- Chakravarti, N. & Wagelmans, A.P.M., 1997. "Calculation of Stability Radii for Combinatorial Optimization Problems," Econometric Institute Research Papers EI 9740/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lai, Tsung-Chyan & Sotskov, Yuri N. & Sotskova, Nadezhda & Werner, Frank, 2004. "Mean flow time minimization with given bounds of processing times," European Journal of Operational Research, Elsevier, vol. 159(3), pages 558-573, December.
- repec:dgr:rugsom:00a22 is not listed on IDEAS
- Meloni, Carlo & Pranzo, Marco & Samà , Marcella, 2022. "Evaluation of VaR and CVaR for the makespan in interval valued blocking job shops," International Journal of Production Economics, Elsevier, vol. 247(C).
- Constantin Waubert de Puiseau & Richard Meyes & Tobias Meisen, 2022. "On reliability of reinforcement learning based production scheduling systems: a comparative survey," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 911-927, April.
- Ramaswamy, R. & Chakravarti, N. & Ghosh, D., 2000. "Complexity of determining exact tolerances for min-max combinatorial optimization problems," Research Report 00A22, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
More about this item
Keywords
disjunctive graph; linear binary programming; scheduling; stability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1413. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.