IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1402.html
   My bibliography  Save this paper

On regenerative processes and inventory control

Author

Listed:
  • Frenk, J.B.G.
  • Kleijn, M.J.

Abstract

In this paper we discuss a general framework for single item inventory control models. This framework is based on the regenerative structure of these models. Using results from the theory of regenerative processes a unified presentation of those models is presented. Although most of the results are already known for special cost structures this unified presentation yields us the possibility to show that the same techniques can be applied to each instance.

Suggested Citation

  • Frenk, J.B.G. & Kleijn, M.J., 1997. "On regenerative processes and inventory control," Econometric Institute Research Papers EI 9741/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1402
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1402/feweco19971007145217.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Izzet Sahin, 1979. "On the Stationary Analysis of Continuous Review ( s , S ) Inventory Systems with Constant Lead Times," Operations Research, INFORMS, vol. 27(4), pages 717-729, August.
    2. B. D. Sivazlian, 1974. "A Continous-Review ( s , S ) Inventory System with Arbitrary Interarrival Distribution between Unit Demand," Operations Research, INFORMS, vol. 22(1), pages 65-71, February.
    3. Blyth C. Archibald & Edward A. Silver, 1978. "(s, S) Policies Under Continuous Review and Discrete Compound Poisson Demand," Management Science, INFORMS, vol. 24(9), pages 899-909, May.
    4. F. R. Richards, 1975. "Technical Note—Comments on the Distribution of Inventory Position in a Continuous-Review ( s , S ) Inventory System," Operations Research, INFORMS, vol. 23(2), pages 366-371, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Continuous‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 154-169, January.
    2. Roni, Mohammad S. & Jin, Mingzhou & Eksioglu, Sandra D., 2015. "A hybrid inventory management system responding to regular demand and surge demand," Omega, Elsevier, vol. 52(C), pages 190-200.
    3. Joseph B. Mazzola & William F. McCoy & Harvey M. Wagner, 1987. "Algorithms and heuristics for variable‐yield lot sizing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(1), pages 67-86, February.
    4. Michael N. Katehakis & Benjamin Melamed & Jim Junmin Shi, 2022. "Optimal replenishment rate for inventory systems with compound Poisson demands and lost sales: a direct treatment of time-average cost," Annals of Operations Research, Springer, vol. 317(2), pages 665-691, October.
    5. Xiaobo Zhao & Fan Fan & Xiaoliang Liu & Jinxing Xie, 2007. "Storage-Space Capacitated Inventory System with ( r, Q ) Policies," Operations Research, INFORMS, vol. 55(5), pages 854-865, October.
    6. Jim Shi, 2022. "Optimal continuous production-inventory systems subject to stockout risk," Annals of Operations Research, Springer, vol. 317(2), pages 777-804, October.
    7. Fernando Alvarez & Francesco Lippi & Roberto Robatto, 2019. "Cost of Inflation in Inventory Theoretical Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 206-226, April.
    8. Tovey C. Bachman & Pamela J. Williams & Kristen M. Cheman & Jeffrey Curtis & Robert Carroll, 2016. "PNG: Effective Inventory Control for Items with Highly Variable Demand," Interfaces, INFORMS, vol. 46(1), pages 18-32, February.
    9. Prak, Dennis & Teunter, Ruud & Babai, Mohamed Zied & Boylan, John E. & Syntetos, Aris, 2021. "Robust compound Poisson parameter estimation for inventory control," Omega, Elsevier, vol. 104(C).
    10. Kochel, P., 2007. "Order optimisation in multi-location models with hub-and-spoke structure," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 368-387, July.
    11. Prak, Derk & Teunter, Rudolf & Babai, M. Z. & Syntetos, A. A. & Boylan, D, 2018. "Forecasting and Inventory Control with Compound Poisson Demand Using Periodic Demand Data," Research Report 2018010, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    12. Izzet Sahin & Diptendu Sinha, 1987. "Renewal approximation to optimal order quantity for a class of continuous‐review inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 655-667, October.
    13. Alvarez, Fernando & Lippi, Francesco, 2013. "The demand of liquid assets with uncertain lumpy expenditures," Journal of Monetary Economics, Elsevier, vol. 60(7), pages 753-770.
    14. Y. Barron, 2019. "A state-dependent perishability (s, S) inventory model with random batch demands," Annals of Operations Research, Springer, vol. 280(1), pages 65-98, September.
    15. Tamer Boyacı & Guillermo Gallego, 2002. "Managing waiting times of backordered demands in single‐stage (Q, r) inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 557-573, September.
    16. Zied Babai, M. & Syntetos, Aris A. & Teunter, Ruud, 2010. "On the empirical performance of (T, s, S) heuristics," European Journal of Operational Research, Elsevier, vol. 202(2), pages 466-472, April.
    17. Kilic, Onur A. & Tarim, S. Armagan, 2024. "A simple heuristic for computing non-stationary inventory policies based on function approximation," European Journal of Operational Research, Elsevier, vol. 316(3), pages 899-905.
    18. Alain Bensoussan & Lama Moussawi-Haidar & Metin Çakanyıldırım, 2010. "Inventory control with an order-time constraint: optimality, uniqueness and significance," Annals of Operations Research, Springer, vol. 181(1), pages 603-640, December.
    19. Kaj Rosling, 2002. "Inventory Cost Rate Functions with Nonlinear Shortage Costs," Operations Research, INFORMS, vol. 50(6), pages 1007-1017, December.
    20. Mak, K. L. & Lai, K. K. & Ng, W. C. & Yiu, K. F. C., 2005. "Analysis of optimal opportunistic replenishment policies for inventory systems by using a (s,S) model with a maximum issue quantity restriction," European Journal of Operational Research, Elsevier, vol. 166(2), pages 385-405, October.

    More about this item

    Keywords

    inventory; regenerative processes;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.