IDEAS home Printed from https://ideas.repec.org/p/ekd/002672/3798.html
   My bibliography  Save this paper

Consumer responsibilities of carbon emissions in a post-Kyoto regime until 2020

Author

Listed:
  • Kirsten Svenja Wiebe
  • Christian Lutz

Abstract

COP17 in Durban revealed once again the general willingness to commit to the 2°-target and the difficulty to reach an international Post-Kyoto agreement until 2015. There is strong evidence from model-based analysis that economic costs of reaching the 2°-target will be below global GDP growth of one year. Any feasible solution has to address a fair sharing of mitigation responsibilities across the globe. This is explicitly considered in the research on the difference between production-based and consumption-based emissions. Using a multi-regional input-output model (MRIO) extended with carbon intensity coefficients, it is possible to calculate consumption-based carbon emissions. This paper combines two strands of research: It uses the results of a scenario analysis with the GINFORS model regarding mitigation efforts in line with the Copenhagen pledges for 2020 to then calculate the distribution of future consumption-based carbon emissions around the globe using the Global Resource Accounting Model (GRAM).GINFORS (Global INterindustry FORecasting System) is a dynamic macro-econometric input-output model that has been widely applied in analyzing national and international environmental and energy-related policy measures. GINFORS projections provide GDP development, energy balances and energy-related carbon emissions for 53 countries and two regions (Lutz et al., 2010). Sectoral production structures and trade data are available for all OECD countries, their major trading partners and the large emerging economies. The results of the scenario analysis in GINFORS are used to project the multi-regional input-output coefficient matrix and the corresponding final demand matrix as well as the energy-intensity coefficient vector of the MRIO model GRAM. GRAM is based on the same data as GINFORS and hence has the same sectoral and regional structure (Wiebe et al., 2012). Using GRAM we are able to calculate consumption-based carbon emissions of the given Post-Kyoto regime until 2020.Production-based carbon emissions will further increase in emerging economies, whereas OECD countries will have to reduce emissions according to their Copenhagen pledges. The results show that a consumption-based accounting of carbon emissions allocates more emissions to the industrialized countries than production-based accounting. However, the increasing final demand in the emerging economies may reduce net-exports and hence also the relative net-emissions embodied in these exports. Global responsibility for the lager part of carbon emissions will remain with the highly industrialized OECD countries. Still, the shift towards a higher responsibility of emerging economies is inevitable as these are growing faster (economy and population wise) and continue producing with more carbon-intensive technologies. References Lutz, C., Meyer, B. and Wolter, M.I. (2010). The Global Multisector/Multicountry 3E-Model GINFORS. A Description of the Model and a Baseline Forecast for Global Energy Demand and CO2 Emissions. International Journal of Global Environmental Issues, 10(1-2), pp. 25-45. Wiebe, K.S., Bruckner, M., Giljum, S. and Lutz, C. (2012). Calculating energy-related CO2 emissions embodied in international trade using a global input-output model. Economic Systems Research, forthcoming.

Suggested Citation

  • Kirsten Svenja Wiebe & Christian Lutz, 2012. "Consumer responsibilities of carbon emissions in a post-Kyoto regime until 2020," EcoMod2012 3798, EcoMod.
  • Handle: RePEc:ekd:002672:3798
    as

    Download full text from publisher

    File URL: http://ecomod.net/system/files/Paper_Ecomod_Lutz_Wiebe.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirsten S. Wiebe & Martin Bruckner & Stefan Giljum & Christian Lutz, 2012. "Calculating Energy-Related Co 2 Emissions Embodied In International Trade Using A Global Input--Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 24(2), pages 113-139, November.
    2. Kirsten S. Wiebe & Martin Bruckner & Stefan Giljum & Christian Lutz & Christine Polzin, 2012. "Carbon and Materials Embodied in the International Trade of Emerging Economies," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 636-646, August.
    3. Christian Lutz & Bernd Meyer & Marc Ingo Wolter, 2010. "The global multisector/multicountry 3-E model GINFORS. A description of the model and a baseline forecast for global energy demand and CO 2 emissions," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 25-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Distefano, Tiziano & Kelly, Scott, 2017. "Are we in deep water? Water scarcity and its limits to economic growth," Ecological Economics, Elsevier, vol. 142(C), pages 130-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriela Michalek & Reimund Schwarze, 2015. "Carbon leakage: pollution, trade or politics?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1471-1492, December.
    2. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    3. Kirsten S. Wiebe, 2016. "The impact of renewable energy diffusion on European consumption-based emissions," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 133-150, June.
    4. Hu, Junmei & Liu, Gengyuan & Meng, Fanxin & Hu, Yuanchao & Casazza, Marco, 2020. "Subnational carbon flow pattern analysis using multi-scale input-output model," Ecological Modelling, Elsevier, vol. 431(C).
    5. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Cortés-Borda, D. & Ruiz-Hernández, A. & Guillén-Gosálbez, G. & Llop, M. & Guimerà, R. & Sales-Pardo, M., 2015. "Identifying strategies for mitigating the global warming impact of the EU-25 economy using a multi-objective input–output approach," Energy Policy, Elsevier, vol. 77(C), pages 21-30.
    7. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    8. José M. Rueda-Cantuche & Tamas Revesz & Antonio F. Amores & Agustín Velázquez & Marian Mraz & Emanuele Ferrari & Alfredo J. Mainar-Causapé & Letizia Montinari & Bert Saveyn, 2020. "Improving the European input–output database for global trade analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-16, December.
    9. Ajayi, Patricia & Ogunrinola, Adedeji, 2020. "Growth, Trade Openness and Environmental Degradation in Nigeria," MPRA Paper 100713, University Library of Munich, Germany.
    10. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    11. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    12. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    13. Mohammad Aghapour Sabbaghi & Afsaneh Naeimifar, 2022. "Analysis of import substitution policy with an emphasis on environmental issues based on environmental input–output (EIO) model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14130-14162, December.
    14. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    15. Wiebe, Kirsten S. & Lutz, Christian, 2016. "Endogenous technological change and the policy mix in renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 739-751.
    16. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    17. Pothen, Frank & Schymura, Michael, 2014. "Bigger cakes with less ingredients? A comparison of material use of the world economy," ZEW Discussion Papers 14-030, ZEW - Leibniz Centre for European Economic Research.
    18. Susan Spierre Clark & Thomas P. Seager & Evan Selinger, 2015. "A development-based approach to global climate policy," Environment Systems and Decisions, Springer, vol. 35(1), pages 1-10, March.
    19. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    20. Meyer, Bernd & Ahlert, Gerd, 2019. "Imperfect Markets and the Properties of Macro-economic-environmental Models as Tools for Policy Evaluation," Ecological Economics, Elsevier, vol. 155(C), pages 80-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ekd:002672:3798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theresa Leary (email available below). General contact details of provider: https://edirc.repec.org/data/ecomoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.