IDEAS home Printed from https://ideas.repec.org/p/ehu/biltok/5576.html
   My bibliography  Save this paper

A parallelizable algorithmic framework for solving large scale multi-stage stochastic mixed 0-1 problems under uncertainty

Author

Listed:
  • Escudero Bueno, Laureano F.
  • Garín Martín, María Araceli
  • Merino Maestre, María
  • Pérez Sainz de Rozas, Gloria

Abstract

In this paper we present a parallelizable scheme of the Branch-and-Fix Coordination algorithm for solving medium and large scale multi-stage mixed 0-1 optimization problems under uncertainty. The uncertainty is represented via a nonsymmetric scenario tree. An information structuring for scenario cluster partitioning of nonsymmetric scenario trees is also presented, given the general model formulation of a multi-stage stochastic mixed 0-1 problem. The basic idea consists of explicitly rewriting the nonanticipativity constraints (NAC) of the 0-1 and continuous variables in the stages with common information. As a result an assignment of the constraint matrix blocks into independent scenario cluster submodels is performed by a so-called cluster splitting-compact representation. This partitioning allows to generate a new information structure to express the NAC which link the related clusters, such that the explicit NAC linking the submodels together is performed by a splitting variable representation. The new algorithm has been implemented in a C++ experimental code that uses the open source optimization engine COIN-OR, for solving the auxiliary linear and mixed 0-1 submodels. Some computational experience is reported to validate the new proposed approach. We give computational evidence of the model tightening effect that have preprocessing techniques in stochastic integer optimization as well, by using the probing and Gomory and clique cuts identification and appending schemes of the optimization engine.

Suggested Citation

  • Escudero Bueno, Laureano F. & Garín Martín, María Araceli & Merino Maestre, María & Pérez Sainz de Rozas, Gloria, 2011. "A parallelizable algorithmic framework for solving large scale multi-stage stochastic mixed 0-1 problems under uncertainty," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
  • Handle: RePEc:ehu:biltok:5576
    as

    Download full text from publisher

    File URL: https://addi.ehu.es/handle/10810/5576
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Willem Klein Haneveld & Maarten van der Vlerk, 1999. "Stochastic integer programming:General models and algorithms," Annals of Operations Research, Springer, vol. 85(0), pages 39-57, January.
    3. Monique Guignard & Ellis Johnson & Kurt Spielberg, 2005. "Logical Processing for Integer Programming," Annals of Operations Research, Springer, vol. 140(1), pages 263-304, November.
    4. Harlan Crowder & Ellis L. Johnson & Manfred Padberg, 1983. "Solving Large-Scale Zero-One Linear Programming Problems," Operations Research, INFORMS, vol. 31(5), pages 803-834, October.
    5. Laureano Escudero & Araceli Garín & María Merino & Gloria Pérez, 2009. "BFC-MSMIP: an exact branch-and-fix coordination approach for solving multistage stochastic mixed 0–1 problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 96-122, July.
    6. Monique Guignard & Kurt Spielberg, 1981. "Logical Reduction Methods in Zero-One Programming—Minimal Preferred Variables," Operations Research, INFORMS, vol. 29(1), pages 49-74, February.
    7. M. W. P. Savelsbergh, 1994. "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 6(4), pages 445-454, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Gemander & Wei-Kun Chen & Dieter Weninger & Leona Gottwald & Ambros Gleixner & Alexander Martin, 2020. "Two-row and two-column mixed-integer presolve using hashing-based pairing methods," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 205-240, October.
    2. Ellis L. Johnson & George L. Nemhauser & Martin W.P. Savelsbergh, 2000. "Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 2-23, February.
    3. Tobias Achterberg & Robert E. Bixby & Zonghao Gu & Edward Rothberg & Dieter Weninger, 2020. "Presolve Reductions in Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 473-506, April.
    4. Wei-Kun Chen & Liang Chen & Mu-Ming Yang & Yu-Hong Dai, 2018. "Generalized coefficient strengthening cuts for mixed integer programming," Journal of Global Optimization, Springer, vol. 70(1), pages 289-306, January.
    5. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    6. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.
    7. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    8. Ambros Gleixner & Leona Gottwald & Alexander Hoen, 2023. "P a PILO: A Parallel Presolving Library for Integer and Linear Optimization with Multiprecision Support," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1329-1341, November.
    9. Giovanni Pantuso & Trine K. Boomsma, 2020. "On the number of stages in multistage stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 581-603, September.
    10. Ndayikengurutse Adrien & Huang Siming, 2020. "Implementation of Presolving and Interior-Point Algorithm for Linear & Mixed Integer Programming: SOFTWARE," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 195-223, June.
    11. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Other publications TiSEM a03f895f-b941-41a9-84e0-b, Tilburg University, School of Economics and Management.
    12. Escudero, L. F. & Munoz, S., 2003. "On identifying dominant cliques," European Journal of Operational Research, Elsevier, vol. 149(1), pages 65-76, August.
    13. Feng Qiu & Shabbir Ahmed & Santanu S. Dey & Laurence A. Wolsey, 2014. "Covering Linear Programming with Violations," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 531-546, August.
    14. Semih Atakan & Suvrajeet Sen, 2018. "A Progressive Hedging based branch-and-bound algorithm for mixed-integer stochastic programs," Computational Management Science, Springer, vol. 15(3), pages 501-540, October.
    15. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Discussion Paper 2016-039, Tilburg University, Center for Economic Research.
    16. Semih Atakan & Kerem Bülbül & Nilay Noyan, 2017. "Minimizing value-at-risk in single-machine scheduling," Annals of Operations Research, Springer, vol. 248(1), pages 25-73, January.
    17. Ilke Bakir & Natashia Boland & Brian Dandurand & Alan Erera, 2020. "Sampling Scenario Set Partition Dual Bounds for Multistage Stochastic Programs," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 145-163, January.
    18. Fernando Veliz & Jean-Paul Watson & Andres Weintraub & Roger Wets & David Woodruff, 2015. "Stochastic optimization models in forest planning: a progressive hedging solution approach," Annals of Operations Research, Springer, vol. 232(1), pages 259-274, September.
    19. Lulli, Guglielmo & Sen, Suvrajeet, 2006. "A heuristic procedure for stochastic integer programs with complete recourse," European Journal of Operational Research, Elsevier, vol. 171(3), pages 879-890, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehu:biltok:5576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alcira Macías (email available below). General contact details of provider: https://edirc.repec.org/data/deehues.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.