IDEAS home Printed from https://ideas.repec.org/p/ehu/biltok/18875.html
   My bibliography  Save this paper

Risk management for mathematical optimization under uncertainty

Author

Listed:
  • Aranburu Laka, Larraitz
  • Escudero Bueno, Laureano F.
  • Garín Martín, María Araceli
  • Merino Maestre, María
  • Pérez Sainz de Rozas, Gloria

Abstract

We present a general multistage stochastic mixed 0-1 problem where the uncertainty appears everywhere in the objective function, constraints matrix and right-hand-side. The uncertainty is represented by a scenario tree that can be a symmetric or a nonsymmetric one. The stochastic model is converted in a mixed 0-1 Deterministic Equivalent Model in compact representation. Due to the difficulty of the problem, the solution offered by the stochastic model has been traditionally obtained by optimizing the objective function expected value (i.e., mean) over the scenarios, usually, along a time horizon. This approach (so named risk neutral) has the inconvenience of providing a solution that ignores the variance of the objective value of the scenarios and, so, the occurrence of scenarios with an objective value below the expected one. Alternatively, we present several approaches for risk averse management, namely, a scenario immunization strategy, the optimization of the well known Value-at-Risk (VaR) and several variants of the Conditional Value-at-Risk strategies, the optimization of the expected mean minus the weighted probability of having a "bad" scenario to occur for the given solution provided by the model, the optimization of the objective function expected value subject to stochastic dominance constraints (SDC) for a set of profiles given by the pairs of threshold objective values and either bounds on the probability of not reaching the thresholds or the expected shortfall over them, and the optimization of a mixture of the VaR and SDC strategies.

Suggested Citation

  • Aranburu Laka, Larraitz & Escudero Bueno, Laureano F. & Garín Martín, María Araceli & Merino Maestre, María & Pérez Sainz de Rozas, Gloria, 2016. "Risk management for mathematical optimization under uncertainty," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
  • Handle: RePEc:ehu:biltok:18875
    as

    Download full text from publisher

    File URL: https://addi.ehu.es/handle/10810/18875
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sapto Wahyu Indratno & Kurnia Novita Sari & Mokhammad Ridwan Yudhanegara, 2022. "Optimization in Item Delivery as Risk Management: Multinomial Case Using the New Method of Statistical Inference for Online Decision," Risks, MDPI, vol. 10(6), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehu:biltok:18875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alcira Macías (email available below). General contact details of provider: https://edirc.repec.org/data/deehues.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.