The use of prior information in very robust regression for fraud detection
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Marco Riani & Aldo Corbellini & Anthony C. Atkinson, 2018. "The Use of Prior Information in Very Robust Regression for Fraud Detection," International Statistical Review, International Statistical Institute, vol. 86(2), pages 205-218, August.
References listed on IDEAS
- Marco Riani & Aldo Corbellini & Anthony C. Atkinson, 2018.
"The Use of Prior Information in Very Robust Regression for Fraud Detection,"
International Statistical Review, International Statistical Institute, vol. 86(2), pages 205-218, August.
- Riani, Marco & Corbellini, Aldo & Atkinson, Anthony C., 2018. "The use of prior information in very robust regression for fraud detection," LSE Research Online Documents on Economics 87685, London School of Economics and Political Science, LSE Library.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marco Riani & Aldo Corbellini & Anthony C. Atkinson, 2018.
"The Use of Prior Information in Very Robust Regression for Fraud Detection,"
International Statistical Review, International Statistical Institute, vol. 86(2), pages 205-218, August.
- Riani, Marco & Corbellini, Aldo & Atkinson, Anthony C., 2018. "The use of prior information in very robust regression for fraud detection," LSE Research Online Documents on Economics 87685, London School of Economics and Political Science, LSE Library.
- Francesca Torti & Marco Riani & Gianluca Morelli, 2021. "Semiautomatic robust regression clustering of international trade data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 863-894, September.
- Vilijandas Bagdonavičius & Linas Petkevičius, 2020. "A new multiple outliers identification method in linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 275-296, April.
- Lucio Barabesi & Andrea Cerioli & Domenico Perrotta, 2021. "Forum on Benford’s law and statistical methods for the detection of frauds," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 767-778, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vilijandas Bagdonavičius & Linas Petkevičius, 2020. "A new multiple outliers identification method in linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 275-296, April.
- Lucio Barabesi & Andrea Cerioli & Domenico Perrotta, 2021. "Forum on Benford’s law and statistical methods for the detection of frauds," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 767-778, September.
- Francesca Torti & Marco Riani & Gianluca Morelli, 2021. "Semiautomatic robust regression clustering of international trade data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 863-894, September.
More about this item
Keywords
big data; data cleaning; forward search; MM estimation; misinvoicing; money laundering; seafood; timeliness;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- F3 - International Economics - - International Finance
- G3 - Financial Economics - - Corporate Finance and Governance
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2019-02-25 (Big Data)
- NEP-ECM-2019-02-25 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:87685. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.