IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/6561.html
   My bibliography  Save this paper

Robust income distribution estimation with missing data

Author

Listed:
  • Victoria-Feser, Maria-Pia

Abstract

With income distributions it is common to encounter the problem of missing data. When a parametric model is fitted to the data, the problem can be overcome by specifying the marginal distribution of the observed data. With classical methods of estimation such as the maximum likelihood (ML) an estimator of the parameters can be obtained in a straightforward manner. Unfortunately, it is well known that ML estimators are not robust estimators in the presence of contaminated data. In this paper, we propose a robust alternative to the ML estimator with truncated data, namely one based on M-estimators that we call the EMM estimator. We present an extensive simulation study where the EMM estimator based on optimal B-robust estimators (OBRE) is compared to a more conservative approach based on marginal density (MD) for truncated data, and show that the difference lies in the way the weights associated to each observation are computed. Finally, we also compare the EMM estimator based on the OBRE with the classical ML estimator when the data are contaminated, and show that contrary to the former, the latter can be seriously biased.

Suggested Citation

  • Victoria-Feser, Maria-Pia, 2001. "Robust income distribution estimation with missing data," LSE Research Online Documents on Economics 6561, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:6561
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/6561/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cowell, Frank A & Victoria-Feser, Maria-Pia, 1996. "Robustness Properties of Inequality Measures," Econometrica, Econometric Society, vol. 64(1), pages 77-101, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
    2. Frank A Cowell & Christian Schluter, 1998. "Measuring Income Mobility with Dirty Data (published in Ethnic and Racial Studies, 22(3), May 1999)," CASE Papers 016, Centre for Analysis of Social Exclusion, LSE.
    3. Silvia De Nicol`o & Maria Rosaria Ferrante & Silvia Pacei, 2021. "Mind the Income Gap: Bias Correction of Inequality Estimators in Small-Sized Samples," Papers 2107.08950, arXiv.org, revised May 2023.
    4. Anton I. Votinov & Samvel S. Lazaryan & Vyacheslav N. Ovchinnikov, 2019. "Regression-Based Decomposition of Income Inequality Factors in Russia," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 5, pages 74-89, October.
    5. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    6. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and the Measurement of Inequality in Egypt," The World Bank Economic Review, World Bank, vol. 32(2), pages 428-455.
    7. Andrea Brandolini & Anthony B. Atkinson, 2001. "Promise and Pitfalls in the Use of "Secondary" Data-Sets: Income Inequality in OECD Countries As a Case Study," Journal of Economic Literature, American Economic Association, vol. 39(3), pages 771-799, September.
    8. Ravallion, Martin & Shaohua Chen, 1998. "When economic reform is faster than statistical reform - measuring and explaining inequality in rural China," Policy Research Working Paper Series 1902, The World Bank.
    9. Kleiber, Christian, 1997. "The existence of population inequality measures," Economics Letters, Elsevier, vol. 57(1), pages 39-44, November.
    10. Nicoletti, Cheti & Peracchi, Franco & Foliano, Francesca, 2011. "Estimating Income Poverty in the Presence of Missing Data and Measurement Error," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 61-72.
    11. Stephen P. Jenkins & Richard V. Burkhauser & Shuaizhang Feng & Jeff Larrimore, 2009. "Measuring Inequality Using Censored Data: A Multiple Imputation Approach," Discussion Papers of DIW Berlin 866, DIW Berlin, German Institute for Economic Research.
    12. Thesia I. Garner & Kathleen Short, 2005. "Developing a New Poverty Line for the USA: Are There Lessons for India?," Working Papers 378, U.S. Bureau of Labor Statistics.
    13. Frank Cowell & Maria-Pia Victoria-Feser, 2003. "Distribution-Free Inference for Welfare Indices under Complete and Incomplete Information," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 1(3), pages 191-219, December.
    14. Frank Cowell & Emmanuel Flachaire, 2021. "Inequality Measurement: Methods and Data," Post-Print hal-03589066, HAL.
    15. Frank A Cowell & Christian Schluter, 1998. "Income Mobility: A Robust Approach (published in Income Inequality Measurement: From Theory to Practice, J Silber (ed, Dewenter: Kluver , 1999)," STICERD - Distributional Analysis Research Programme Papers 37, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Miguel Székely & Marianne Hilgert, 1999. "Los años 90 en América Latina: otra década de pertinaz desigualdad," Research Department Publications 4191, Inter-American Development Bank, Research Department.
    17. Bhalotra, Sonia & Fernandez Sierra, Manuel, 2018. "The distribution of the gender wage gap," ISER Working Paper Series 2018-10, Institute for Social and Economic Research.
    18. Yves Tillé, 2016. "The legacy of Corrado Gini in survey sampling and inequality theory," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 167-176, August.
    19. Paula K. Lorgelly & Joanne Lindley, 2008. "What is the relationship between income inequality and health? Evidence from the BHPS," Health Economics, John Wiley & Sons, Ltd., vol. 17(2), pages 249-265, February.
    20. Arthur Charpentier & Emmanuel Flachaire, 2022. "Pareto models for top incomes and wealth," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 1-25, March.

    More about this item

    Keywords

    M-estimators; influence function; EM algorithm; truncated data.;
    All these keywords.

    JEL classification:

    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:6561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.