IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/57687.html
   My bibliography  Save this paper

Double-normal pairs in the plane and on the sphere

Author

Listed:
  • Pach, János
  • Swanepoel, Konrad J.

Abstract

A double-normal pair of a finite set S of points from Euclidean space is a pair of points {p p,q q} from S such that S lies in the closed strip bounded by the hyperplanes through p p and q q that are perpendicular to p pq q . A double-normal pair p pq q is strict if S∖{p p,q q} lies in the open strip. We answer a question of Martini and Soltan (2006) by showing that a set of n≥3 points in the plane has at most 3⌊n/2⌋ double-normal pairs. This bound is sharp for each n≥3 . In a companion paper, we have asymptotically determined this maximum for points in R 3 . Here we show that if the set lies on some 2 -sphere, it has at most 17n/4−6 double-normal pairs. This bound is attained for infinitely many values of n . We also establish tight bounds for the maximum number of strict double-normal pairs in a set of n points in the plane and on the sphere.

Suggested Citation

  • Pach, János & Swanepoel, Konrad J., 2015. "Double-normal pairs in the plane and on the sphere," LSE Research Online Documents on Economics 57687, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:57687
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/57687/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    200021-137574; 200020-144531;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:57687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.