IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/50286.html
   My bibliography  Save this paper

Optimal administrative geographies: an algorithmic approach

Author

Listed:
  • Datta, D.
  • Figueira, J. R.
  • Gourtani, A. M.
  • Morton, A.

Abstract

Centrally planned Beveridge healthcare systems typically rely heavily on local or regional "health authorities" as responsible organisations for the care of geographically defined populations. The frequency of reorganisations in the English NHS suggests that there is no compelling unitary definition of what constitutes a good healthcare geography. In this paper we propose a set of desirable objectives for an administrative healthcare geography, specifically: geographical compactness, co-extensiveness with current local authorities and size and population homogeneity, and we show how these might be operationally measured. Based on these objectives, we represent the problem of how to partition a territory into health authorities as a multi-objective optimisation problem. We use a state-of-the-art multi-objective genetic algorithm customised for the needs of our study to partition the territory of the East England into 14 Primary Care Trusts and 50 GP consortia and study the tradeoffs between objectives which this reveals.

Suggested Citation

  • Datta, D. & Figueira, J. R. & Gourtani, A. M. & Morton, A., 2013. "Optimal administrative geographies: an algorithmic approach," LSE Research Online Documents on Economics 50286, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:50286
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/50286/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steiner, Maria Teresinha Arns & Datta, Dilip & Steiner Neto, Pedro José & Scarpin, Cassius Tadeu & Rui Figueira, José, 2015. "Multi-objective optimization in partitioning the healthcare system of Parana State in Brazil," Omega, Elsevier, vol. 52(C), pages 53-64.

    More about this item

    Keywords

    genetic algorithm; GP consortium; healthcare geography; multi-objective optimisation; primary care trusts;
    All these keywords.

    JEL classification:

    • J50 - Labor and Demographic Economics - - Labor-Management Relations, Trade Unions, and Collective Bargaining - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:50286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.