IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/25832.html
   My bibliography  Save this paper

Parametric modelling of thresholds across scales in wavelet regression

Author

Listed:
  • Antoniadis, Anestis
  • Fryzlewicz, Piotr

Abstract

We propose a parametric wavelet thresholding procedure for estimation in the ‘function plus independent, identically distributed Gaussian noise’ model. To reflect the decreasing sparsity of wavelet coefficients from finer to coarser scales, our thresholds also decrease. They retain the noise-free reconstruction property while being lower than the universal threshold, and are jointly parameterised by a single scalar parameter. We show that our estimator achieves near-optimal risk rates for the usual range of Besov spaces. We propose a crossvalidation technique for choosing the parameter of our procedure. A simulation study demonstrates very good performance of our estimator compared to other state-of-the-art techniques. We discuss an extension to non-Gaussian noise.

Suggested Citation

  • Antoniadis, Anestis & Fryzlewicz, Piotr, 2006. "Parametric modelling of thresholds across scales in wavelet regression," LSE Research Online Documents on Economics 25832, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:25832
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/25832/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2006. "A Haar-Fisz technique for locally stationary volatility estimation," LSE Research Online Documents on Economics 25225, London School of Economics and Political Science, LSE Library.
    2. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:25832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.