IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/24435.html
   My bibliography  Save this paper

Some determinants of the price of default risk

Author

Listed:
  • Anderson, Ronald W.

Abstract

In this paper we study the pricing of credit risk as reflected in the market for credit default swaps (CDS) between 2003 and 2008. This market has newly emerged as the reference for credit risk pricing because of its use of standardized contract specifications and has achieved a higher level of liquidity than typically prevails in the markets for the underlying notes and bonds of the named corporate issuers. We initiate our exploration by studying a particular case which allows us to set out some of the issues of CDS pricing in a simple way. We show that for the purposes of accounting for relatively short-term changes of CDS spreads, an approach based on the structural (or firm-value based) models of credit risk faces an important obstacle in that reliable information about the firm’s liabilities required to calculate the “distance to default” are available only quarterly or in some cases annually. Thus structural models account for short-term movements in credit spreads largely by changes in the issuer’s equity price. In the case studied we show the effect of equity returns in explaining weekly changes of spreads is insignificant and of the wrong sign. In examination of particular episodes when the CDS spread was particularly delinked from the firm’s equity series, we find that a likely explanation is changes in expectations about the firm’s planned capital market operations. Since these are hard to capture in an observed proxy variable, we argued that this motivates the use of latent variable models that have recently been employed in the credit risk literature. We further see that movements in the CDS spreads for the particular name chosen are highly correlated with an index of CDS spreads for industrial Blue-chip names.

Suggested Citation

  • Anderson, Ronald W., 2008. "Some determinants of the price of default risk," LSE Research Online Documents on Economics 24435, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:24435
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/24435/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Joost Driessen, 2005. "Is Default Event Risk Priced in Corporate Bonds?," The Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 165-195.
    3. Zhou, Ping, 2007. "Forecasting bankruptcy and physical default intensity," LSE Research Online Documents on Economics 24434, London School of Economics and Political Science, LSE Library.
    4. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    2. Deniz Anginer & Çelim Yıldızhan, 2018. "Is There a Distress Risk Anomaly? Pricing of Systematic Default Risk in the Cross-section of Equity Returns [The risk-adjusted cost of financial distress]," Review of Finance, European Finance Association, vol. 22(2), pages 633-660.
    3. Zhou, Ping, 2007. "Forecasting bankruptcy and physical default intensity," LSE Research Online Documents on Economics 24434, London School of Economics and Political Science, LSE Library.
    4. Kay Giesecke & Francis A. Longstaff & Stephen Schaefer & Ilya Strebulaev, 2010. "Corporate Bond Default Risk: A 150-Year Perspective," NBER Working Papers 15848, National Bureau of Economic Research, Inc.
    5. Hanson, Samuel G. & Pesaran, M. Hashem & Schuermann, Til, 2008. "Firm heterogeneity and credit risk diversification," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 583-612, September.
    6. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    7. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    8. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    9. Fougère, D. & Golfier, C. & Horny, G. & Kremp, E., 2013. "What has been the impact of the 2008 crisis on firms’ default? (in French)," Working papers 463, Banque de France.
    10. Baele, Lieven & Farooq, Moazzam & Ongena, Steven, 2014. "Of religion and redemption: Evidence from default on Islamic loans," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 141-159.
    11. Nusrat Jahan, 2022. "Macroeconomic Determinants of Corporate Credit Spreads: Evidence from Canada," Carleton Economic Papers 22-07, Carleton University, Department of Economics.
    12. Michael Halling & Evelyn Hayden, 2008. "Bank failure prediction: a two-step survival time approach," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The IFC's contribution to the 56th ISI Session, Lisbon, August 2007, volume 28, pages 48-73, Bank for International Settlements.
    13. Koresh Galil & Neta Gilat, 2019. "Predicting Default More Accurately: To Proxy or Not to Proxy for Default?," International Review of Finance, International Review of Finance Ltd., vol. 19(4), pages 731-758, December.
    14. Huang, Hsing-Hua & Lee, Han-Hsing, 2013. "Product market competition and credit risk," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 324-340.
    15. Ruey-Ching Hwang & Huimin Chung & Jiun-Yi Ku, 2013. "Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market," Journal of Financial Services Research, Springer;Western Finance Association, vol. 43(3), pages 321-341, June.
    16. Rösch, Daniel & Scheule, Harald, 2009. "The Empirical Relation between Credit Quality, Recovery and Correlation," Hannover Economic Papers (HEP) dp-418, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    17. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    18. Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Multiperiod Bankruptcy Prediction Models with Interpretable Single Models," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1357-1390, September.
    19. Lyandres, Evgeny & Zhdanov, Alexei, 2013. "Investment opportunities and bankruptcy prediction," Journal of Financial Markets, Elsevier, vol. 16(3), pages 439-476.
    20. Gabriel Jiménez & Steven Ongena & José‐Luis Peydró & Jesús Saurina, 2014. "Hazardous Times for Monetary Policy: What Do Twenty‐Three Million Bank Loans Say About the Effects of Monetary Policy on Credit Risk‐Taking?," Econometrica, Econometric Society, vol. 82(2), pages 463-505, March.

    More about this item

    JEL classification:

    • G00 - Financial Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:24435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.