IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/127387.html
   My bibliography  Save this paper

Generalized latent variable models for location, scale, and shape parameters

Author

Listed:
  • Cardenas Hurtado, Camilo
  • Moustaki, Irini
  • Chen, Yunxiao
  • Marra, Giampiero

Abstract

We introduce a general framework for latent variable modeling, named Generalized Latent Variable Models for Location, Scale, and Shape parameters (GLVM-LSS). This framework extends the generalized linear latent variable model beyond the exponential family distributional assumption and enables the modeling of distributional parameters other than the mean (location parameter), such as scale and shape parameters, as functions of latent variables. Model parameters are estimated via maximum likelihood. We present two real-world applications on public opinion research and educational testing, and evaluate the model’s performance in terms of parameter recovery through extensive simulation studies. Our results suggest that the GLVM-LSS is a valuable tool in applications where modeling higher-order moments of the observed variables through latent variables is of substantive interest. The proposed model is implemented in the R package glvmlss, available online.

Suggested Citation

  • Cardenas Hurtado, Camilo & Moustaki, Irini & Chen, Yunxiao & Marra, Giampiero, 2025. "Generalized latent variable models for location, scale, and shape parameters," LSE Research Online Documents on Economics 127387, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:127387
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/127387/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    latent variable models; distributional regression; GAMLSS; EM algorithm; heteroscedasticity;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:127387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.