IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/122721.html
   My bibliography  Save this paper

Downscaling down under: towards degrowth in integrated assessment models

Author

Listed:
  • Kikstra, Jarmo S.
  • Li, Mengyu
  • Brockway, Paul E.
  • Hickel, Jason
  • Keysser, Lorenz
  • Malik, Arunima
  • Rogelj, Joeri
  • van Ruijven, Bas
  • Lenzen, Manfred

Abstract

IPCC reports, to date, have not featured ambitious mitigation scenarios with degrowth in high-income regions. Here, using MESSAGEix-Australia, we create 51 emissions scenarios for Australia with near-term GDP growth going from +3%/year to rapid reductions (−5%/year) to explore how a traditional integrated assessment model (IAM) represents degrowth from an economic starting point, not just energy demand reduction. We find that stagnating GDP per capita reduces the mid-century need for upscaling solar and wind energy by about 40% compared to the SSP2 growth baseline, and limits future material needs for renewables. Still, solar and wind energy in 2030 is more than quadruple that of 2020. Faster reductions in energy demand may entail higher socio-cultural feasibility concerns, depending on the policies involved. Strong reductions in inequality reduce the risk of lowered access to decent living services. We discuss research needs and possible IAM extensions to improve post-growth and degrowth scenario modelling.

Suggested Citation

  • Kikstra, Jarmo S. & Li, Mengyu & Brockway, Paul E. & Hickel, Jason & Keysser, Lorenz & Malik, Arunima & Rogelj, Joeri & van Ruijven, Bas & Lenzen, Manfred, 2024. "Downscaling down under: towards degrowth in integrated assessment models," LSE Research Online Documents on Economics 122721, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:122721
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/122721/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kristian S. Nielsen & Kimberly A. Nicholas & Felix Creutzig & Thomas Dietz & Paul C. Stern, 2021. "The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions," Nature Energy, Nature, vol. 6(11), pages 1011-1016, November.
    2. Stefan Pauliuk & Anders Arvesen & Konstantin Stadler & Edgar G. Hertwich, 2017. "Industrial ecology in integrated assessment models," Nature Climate Change, Nature, vol. 7(1), pages 13-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    2. Donath Asiimire. & Robert Mugabe. & Dr. Nuwatuhaire Benard., 2024. "High Income Levels and Domestic Violence among Couples in Mbarara City, Mbarara District," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 1558-1568, June.
    3. Mangla, Sachin Kumar & Srivastava, Praveen Ranjan & Eachempati, Prajwal & Tiwari, Aviral Kumar, 2024. "Exploring the impact of key performance factors on energy markets: From energy risk management perspectives," Energy Economics, Elsevier, vol. 131(C).
    4. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
    5. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    7. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & Mima, Silvana & van Vuuren, Detlef P. & Worrell, Ernst, 2019. "The scope for better industry representation in long-term energy models: Modeling the cement industry," Applied Energy, Elsevier, vol. 240(C), pages 964-985.
    8. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    9. Tobias Junne & Sonja Simon & Jens Buchgeister & Maximilian Saiger & Manuel Baumann & Martina Haase & Christina Wulf & Tobias Naegler, 2020. "Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
    10. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    11. Stefan Pauliuk & Tomer Fishman & Niko Heeren & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "Linking service provision to material cycles: A new framework for studying the resource efficiency–climate change (RECC) nexus," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 260-273, April.
    12. Radtke, Jörg & Bohn, Nino S., 2023. "Mind the gap: Community member perceptions of shortcomings in diversity and inclusivity of local energy projects in Germany," Utilities Policy, Elsevier, vol. 85(C).
    13. Jouzi, Fatemeh & Levänen, Jarkko & Mikkilä, Mirja & Linnanen, Lassi, 2024. "To spend or to avoid? A critical review on the role of money in aiming for sufficiency," Ecological Economics, Elsevier, vol. 220(C).
    14. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    15. Porcelli, Roberto & Gibon, Thomas & Marazza, Diego & Righi, Serena & Rugani, Benedetto, 2023. "Prospective environmental impact assessment and simulation applied to an emerging biowaste-based energy technology in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    16. Linwei Pan & Minglei Zhu & Ningning Lang & Tengfei Huo, 2020. "What Is the Amount of China’s Building Floor Space from 1996 to 2014?," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
    17. Conteratto, Caroline & Artuzo, Felipe Dalzotto & Benedetti Santos, Omar Inácio & Talamini, Edson, 2021. "Biorefinery: A comprehensive concept for the sociotechnical transition toward bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Jingwen Huo & Jing Meng & Heran Zheng & Priti Parikh & Dabo Guan, 2023. "Achieving decent living standards in emerging economies challenges national mitigation goals for CO2 emissions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Julien Pedneault & Guillaume Majeau‐Bettez & Stefan Pauliuk & Manuele Margni, 2022. "Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1728-1746, October.
    20. Stefan Pauliuk & Niko Heeren, 2020. "ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 446-458, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:122721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.