IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/119988.html
   My bibliography  Save this paper

A dynamic social relations model for clustered longitudinal dyadic data with continuous or ordinal responses

Author

Listed:
  • Pillinger, Rebecca
  • Steele, Fiona
  • Leckie, George
  • Jenkins, Jennifer

Abstract

Social relations models allow the identification of cluster, actor, partner, and relationship effects when analysing clustered dyadic data on interactions between individuals or other units of analysis. We propose an extension of this model which handles longitudinal data and incorporates dynamic structure, where the response may be continuous, binary, or ordinal. This allows the disentangling of the relationship effects from temporal fluctuation and measurement error and the investigation of whether individuals respond to their partner’s behaviour at the previous observation. We motivate and illustrate the model with an application to Canadian data on pairs of individuals within families observed working together on a conflict discussion task.

Suggested Citation

  • Pillinger, Rebecca & Steele, Fiona & Leckie, George & Jenkins, Jennifer, 2024. "A dynamic social relations model for clustered longitudinal dyadic data with continuous or ordinal responses," LSE Research Online Documents on Economics 119988, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:119988
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/119988/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    2. Stephen Pudney, 2008. "The dynamics of perception: modelling subjective wellbeing in a short panel," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 21-40, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arturas Juodis, 2013. "Cointegration Testing in Panel VAR Models Under Partial Identification and Spatial Dependence," UvA-Econometrics Working Papers 13-08, Universiteit van Amsterdam, Dept. of Econometrics.
    2. Lips, Johannes, 2018. "Debt and the Oil Industry - Analysis on the Firm and Production Level," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181504, Verein für Socialpolitik / German Economic Association.
    3. Lee, Grace H.Y. & Azali, M., 2010. "The endogeneity of the Optimum Currency Area criteria in East Asia," Economic Modelling, Elsevier, vol. 27(1), pages 165-170, January.
    4. Fabio Canova & Matteo Ciccarelli, 2002. "Panel Index Var Models: Specification, Estimation, Testing And Leading Indicators," Working Papers. Serie AD 2002-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    5. Manthos D. Delis & K. Christos Staikouras & Panagiotis T. Varlagas, 2008. "On the Measurement of Market Power in the Banking Industry," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 35(7‐8), pages 1023-1047, September.
    6. Maurice J.G. Bun & Martin A. Carree & Artūras Juodis, 2017. "On Maximum Likelihood Estimation of Dynamic Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 463-494, August.
    7. Giarda, Elena, 2013. "Persistency of financial distress amongst Italian households: Evidence from dynamic models for binary panel data," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3425-3434.
    8. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    9. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    10. Pudney, Stephen, 2011. "Perception and retrospection: The dynamic consistency of responses to survey questions on wellbeing," Journal of Public Economics, Elsevier, vol. 95(3), pages 300-310.
    11. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    12. Krafft Jackie & Quatraro Francesco & Colombelli Alessandra, 2011. "High Growth Firms and Technological Knowledge: Do gazelles follow exploration or exploitation strategies?," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201114, University of Turin.
    13. Nadia Ayari & Szabolcs Blazsek & Pedro Mendi, 2012. "Renewable energy innovations in Europe: a dynamic panel data approach," Applied Economics, Taylor & Francis Journals, vol. 44(24), pages 3135-3147, August.
    14. Arturas Juodis, 2015. "Iterative Bias Correction Procedures Revisited: A Small Scale Monte Carlo Study," UvA-Econometrics Working Papers 15-02, Universiteit van Amsterdam, Dept. of Econometrics.
    15. Boumparis, Periklis & Milas, Costas & Panagiotidis, Theodore, 2019. "Non-performing loans and sovereign credit ratings," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 301-314.
    16. Antonio Pesce, 2013. "Is Decoupling in action?," ERSA conference papers ersa13p1252, European Regional Science Association.
    17. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    18. Matheus Koengkan & José Alberto Fuinhas, 2022. "The Interactions Between Renewable Energy Consumption, Economic Growth, and Globalisation: Fresh Evidence from the Mercosur Countries," Springer Books, in: Globalisation and Energy Transition in Latin America and the Caribbean, chapter 0, pages 63-99, Springer.
    19. Ericsson, Jan & Huang, Xiao & Mazzotta, Stefano, 2016. "Leverage and asymmetric volatility: The firm-level evidence," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 1-21.
    20. Delis, Manthos D. & Kouretas, Georgios P., 2011. "Interest rates and bank risk-taking," Journal of Banking & Finance, Elsevier, vol. 35(4), pages 840-855, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:119988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.