IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/114636.html
   My bibliography  Save this paper

Functional linear regression: dependence and error contamination

Author

Listed:
  • Chen, Cheng
  • Guo, Shaojun
  • Qiao, Xinghao

Abstract

Functional linear regression is an important topic in functional data analysis. It is commonly assumed that samples of the functional predictor are independent realizations of an underlying stochastic process, and are observed over a grid of points contaminated by iid measurement errors. In practice, however, the dynamical dependence across different curves may exist and the parametric assumption on the error covariance structure could be unrealistic. In this article, we consider functional linear regression with serially dependent observations of the functional predictor, when the contamination of the predictor by the white noise is genuinely functional with fully nonparametric covariance structure. Inspired by the fact that the autocovariance function of observed functional predictors automatically filters out the impact from the unobservable noise term, we propose a novel autocovariance-based generalized method-of-moments estimate of the slope function. We also develop a nonparametric smoothing approach to handle the scenario of partially observed functional predictors. The asymptotic properties of the resulting estimators under different scenarios are established. Finally, we demonstrate that our proposed method significantly outperforms possible competing methods through an extensive set of simulations and an analysis of a public financial dataset.

Suggested Citation

  • Chen, Cheng & Guo, Shaojun & Qiao, Xinghao, 2022. "Functional linear regression: dependence and error contamination," LSE Research Online Documents on Economics 114636, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:114636
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/114636/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dakyung Seong, 2022. "Binary response model with many weak instruments," Papers 2201.04811, arXiv.org, revised Jun 2024.

    More about this item

    Keywords

    autocovariance; eigenanalysis; errors-in-predictors; functional linear regression; generalized method-of-moments; local linear smoothing;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:114636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.