IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/108546.html
   My bibliography  Save this paper

Relative arbitrage: sharp time horizons and motion by curvature

Author

Listed:
  • Larsson, Martin
  • Ruf, Johannes

Abstract

We characterize the minimal time horizon over which any equity market with d ≥ 2 stocks and sufficient intrinsic volatility admits relative arbitrage. If d ∈ {2, 3}, the minimal time horizon can be computed explicitly, its value being zero if √ d = 2 and 3/(2π) if d = 3. If d ≥ 4, the minimal time horizon can be characterized via the arrival time function of a geometric flow of the unit simplex in R d that we call the minimum curvature flow.

Suggested Citation

  • Larsson, Martin & Ruf, Johannes, 2021. "Relative arbitrage: sharp time horizons and motion by curvature," LSE Research Online Documents on Economics 108546, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:108546
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/108546/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Itkin & Benedikt Koch & Martin Larsson & Josef Teichmann, 2022. "Ergodic robust maximization of asymptotic growth under stochastic volatility," Papers 2211.15628, arXiv.org.
    2. Cox, Alexander M.G. & Robinson, Benjamin A., 2023. "Optimal control of martingales in a radially symmetric environment," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 149-198.

    More about this item

    Keywords

    arbitrage; geometric flow; stochastic control; stochastic portfolio theory;
    All these keywords.

    JEL classification:

    • F3 - International Economics - - International Finance
    • G3 - Financial Economics - - Corporate Finance and Governance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:108546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.