IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/100939.html
   My bibliography  Save this paper

Projections of scaled bessel processes

Author

Listed:
  • Kardaras, Constantinos
  • Ruf, Johannes

Abstract

Let X and Y denote two independent squared Bessel processes of dimension m and n-m, respectively, with n ≥ 2 and m ∈ [0, n), making X+Y a squared Bessel process of dimension n. For appropriately chosen function s, the process s(X + Y) is a local martingale. We study the representation and the dynamics of s(X + Y), projected on the filtration generated by X. This projection is a strict supermartingale if, and only if, m

Suggested Citation

  • Kardaras, Constantinos & Ruf, Johannes, 2019. "Projections of scaled bessel processes," LSE Research Online Documents on Economics 100939, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:100939
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/100939/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Biagini & Andrea Mazzon & Ari-Pekka Perkkiö, 2023. "Optional projection under equivalent local martingale measures," Finance and Stochastics, Springer, vol. 27(2), pages 435-465, April.
    2. Çetin, Umut & Larsen, Kasper, 2023. "Uniqueness in cauchy problems for diffusive real-valued strict local martingales," LSE Research Online Documents on Economics 118743, London School of Economics and Political Science, LSE Library.
    3. Umut Cetin & Kasper Larsen, 2020. "Uniqueness in Cauchy problems for diffusive real-valued strict local martingales," Papers 2007.15041, arXiv.org, revised May 2022.
    4. Constantinos Kardaras & Johannes Ruf, 2020. "Filtration shrinkage, the structure of deflators, and failure of market completeness," Finance and Stochastics, Springer, vol. 24(4), pages 871-901, October.

    More about this item

    Keywords

    bessel processes; filtering; local martingale; local time;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:100939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.