Author
Abstract
The biotechnology movement in the Caribbean is a fledgling industry that has tremendous potential for development. It focuses on the use of fermentation and enzyme technologies, tissue culture and recombinant DNA (rDNA) technology and is more greatly applied to plant varieties rather than animal species. Tissue culture is by far the most developed type of technology but increasing attention is being paid to rDNA technology. Main areas include application in the agriculture sector but the use in medicine and biology are also being promoted. In its purest form, the term "biotechnology" refers to the use of living organisms or their products to modify human health and the human environment for commercial purposes. The term brings to mind many different things. Some think of developing new types of animals while others anticipate almost unlimited sources of human therapeutic drugs. Still others envision the possibility of growing crops that are more nutritious and naturally pest-resistant to feed a rapidly growing world population. Biotechnology in one form or another has flourished since prehistoric times. When the first human beings realized that they could plant their own crops and breed their own animals, they learned to use biotechnology. The discovery that fruit juices fermented into wine or that milk could be converted into cheese or yogurt, or that beer could be made by fermenting solutions of malt and hops began the study of biotechnology. When the first bakers found that they could make soft, spongy bread rather than a firm, thin cracker, they were acting as fledgling biotechnologists. The first animal breeders, realizing that different physical traits could be either magnified or lost by mating appropriate pairs of animals, engaged in the manipulations of biotechnology. Throughout human history, we have learned a great deal about the different organisms that our ancestors used so effectively. The marked increase in our understanding of these organisms and their cell products gains us the ability to control the many functions of various cells and organisms. Using the techniques of gene splicing and recombinant DNA technology, we can now actually combine the genetic elements of two or more living cells. Functioning lengths of DNA can be taken from one organism and placed into the cells of another organism. As a result, for example, we can cause bacterial cells to produce human molecules. Cows can produce more milk for the same amount of feed. And we can synthesize therapeutic molecules that have never before existed.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecr:col095:38701. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteca CEPAL (email available below). General contact details of provider: https://edirc.repec.org/data/eclaccl.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.