Author
Abstract
The notion of cointegration was developed by Engle and Granger (1987), and since then has been considered important in the recent development of time series econometrics. Many statistical methods have been developed for the analysis of the cointegrated systems, and several methods of estimating the cointegrating vector have been proposed. Another development, generalized autoregressive conditional heteroskedasticity (GARCH), was made by Engle (1982) and Bollerslev (1986) to explain the time-varying volatility in the data. This paper explores the asymptotic properties of the maximum likelihood estimator (MLE) of the cointegrating vector in the vector error correction model with conditional heteroskedasticity. This paper is useful and required because the existing estimation methods do not consider conditional heteroskedasticity in the data. This paper considers the asymptotic properties of the maximum likelihood estimator of the cointegrating vector, which estimates the error correction model and the multivariate GARCH process jointly. The existing estimation methods, including the reduced rank regression (RRR) and the regression-based estimators, allow for, but do not treat explicitly conditional heteroskedasticity. Their asymptotic distributions are invariant to conditional heteroskedasticity. However, these estimators ignore the information coming from conditional heteroskedasticity. Many authors, including Bollerslev et al. (1992), show that economic variables such as stock prices and exchange rates have time-varying variances. The clustered volatility and thick tails are typical characteristics of these variables. Although there is vast literature on the cointegrating vector and GARCH, the distribution theory for the cointegrating vector in the error correction model with conditional heteroskedasticity has not been developed. This paper fills this gap in the literature by developing an asymptotic theory for the cointegrating vector estimator in error correction models with conditional heteroskedasticity. This paper finds that the asymptotic distribution of the MLE depends on the conditional heteroskedasticity and the kurtosis of standardized errors. The reduced rank regression (RRR) and the regression-based cointegrating vector estimators do not consider conditional heteroskedasticity in the data, and thus the MLE improves efficiency significantly. Inference on the cointegrating vector also depends on heteroskedasticity. The simulation results show that the efficiency of the MLE increases as the GARCH effect increases.
Suggested Citation
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
More about this item
Keywords
ECM;
Efficiency Gain;
Multivariate GARCH;
All these keywords.
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nawm04:463. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.