IDEAS home Printed from https://ideas.repec.org/p/ecm/nasm04/578.html
   My bibliography  Save this paper

A Theory of Risk Aversion without the Independence Axiom

Author

Listed:
  • Hengjie Ai

Abstract

I study preferences defined on the set of real valued random variables as a model of economic behavior under uncertainty. It is well-known that under the Independence Axiom, the utility functional has an expected utility representation. However, the Independence Aiom is often found contradictory to empirical evidences. The purpose of this paper is to study risk averse utility functions without assuming the Independence Axiom. The major difference between the approach in this paper and that in the literature is I take the point of that prference are defined on set of random variables, in stead of on probability distribution functions. This approach gives simple characterizations of risk aversion, which cannot be expressed when preference is viewd as defined on probability distribution functions. The second advantage is that the differentiability property of utility function studied in this paper does not rely on the assumption that the random variable is bounded (which has to be assumed if one require the utility function is Frechet differentiable in probability distributions). Considering the importance of the tools developed in continuous time asset pricing theory where asset prices are driven by diffusion process, which is clearly not bounded, this approach looks promising in applying nonexpected utility analysis to asset pricing theories. The first part of the paper studies the relation between convexity of preference and risk aversion. When utility function does not have an expected utility representation, equivalence between convexity and risk aversion breaks down. I showed that under appropriate continuity conditions, risk aversion can be characterized by a simple condition that is weaker than convexity, which I call equal-distribution convexity, that is a preference is risk averse iff convex combinations of random variables with the same distribution are preferred to the random variables themselves. Differential properties of risk averse utility functionals are studied. A representation theorem for the form of the Frechet derivative of continuously differentiable utility functionals is given. Characterization of monotonicity and risk aversion in terms of the Frechet derivative of utility functionals are given. I also provide a criteria of comparing individual's attitude toward risk by the properties of the Frechet differential of the utility functions. This criteria, when applied to expected utility, reduces to the usual Arrow-Platt measure of absolute risk aversion. The last part compares the notion of Machina (1982)'s differentiability and the notion of differentiability proposed in this paper

Suggested Citation

  • Hengjie Ai, 2004. "A Theory of Risk Aversion without the Independence Axiom," Econometric Society 2004 North American Summer Meetings 578, Econometric Society.
  • Handle: RePEc:ecm:nasm04:578
    as

    Download full text from publisher

    File URL: http://www.econ.umn.edu/~hai/riskaversion.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Diamond, Peter A. & Stiglitz, Joseph E., 1974. "Increases in risk and in risk aversion," Journal of Economic Theory, Elsevier, vol. 8(3), pages 337-360, July.
    3. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    4. Armstrong, Thomas E. & Richter, Marcel K., 1984. "The core-walras equivalence," Journal of Economic Theory, Elsevier, vol. 33(1), pages 116-151, June.
    5. Schmeidler, David, 1979. "A bibliographical note on a theorem of Hardy, Littlewood, and Polya," Journal of Economic Theory, Elsevier, vol. 20(1), pages 125-128, February.
    6. Richter, Marcel K, 1980. "Continuous and Semi-Continuous Utility," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(2), pages 293-299, June.
    7. Quiggin John & Wakker Peter, 1994. "The Axiomatic Basis of Anticipated Utility: A Clarification," Journal of Economic Theory, Elsevier, vol. 64(2), pages 486-499, December.
    8. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    9. Allen, Beth, 1987. "Smooth preferences and the approximate expected utility hypothesis," Journal of Economic Theory, Elsevier, vol. 41(2), pages 340-355, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chateauneuf, Alain & Cohen, Michele & Meilijson, Isaac, 2004. "Four notions of mean-preserving increase in risk, risk attitudes and applications to the rank-dependent expected utility model," Journal of Mathematical Economics, Elsevier, vol. 40(5), pages 547-571, August.
    2. Mao, Tiantian & Hu, Taizhong, 2012. "Characterization of left-monotone risk aversion in the RDEU model," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 413-422.
    3. Karni, Edi, 1989. "Generalized Expected Utility Analysis of Multivariate Risk Aversion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(2), pages 297-305, May.
    4. Hengjie Ai, 2005. "Smooth nonexpected utility without state independence," Working Papers 637, Federal Reserve Bank of Minneapolis.
    5. Alain Chateauneuf & Michéle Cohen & Isaac Meilijson, 2005. "More pessimism than greediness: a characterization of monotone risk aversion in the rank-dependent expected utility model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 25(3), pages 649-667, April.
    6. Karni, Edi & Schmeidler, David, 1990. "Utility Theory and Uncertainty," Foerder Institute for Economic Research Working Papers 275480, Tel-Aviv University > Foerder Institute for Economic Research.
    7. Jean Baccelli & Georg Schollmeyer & Christoph Jansen, 2022. "Risk aversion over finite domains," Theory and Decision, Springer, vol. 93(2), pages 371-397, September.
    8. Cerreia-Vioglio, Simone & Maccheroni, Fabio & Marinacci, Massimo & Montrucchio, Luigi, 2012. "Probabilistic sophistication, second order stochastic dominance and uncertainty aversion," Journal of Mathematical Economics, Elsevier, vol. 48(5), pages 271-283.
    9. Abouda, Moez & Chateauneuf, Alain, 2002. "Characterization of symmetrical monotone risk aversion in the RDEU model," Mathematical Social Sciences, Elsevier, vol. 44(1), pages 1-15, September.
    10. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    11. Ulrich Schmidt & Horst Zank, 2008. "Risk Aversion in Cumulative Prospect Theory," Management Science, INFORMS, vol. 54(1), pages 208-216, January.
    12. Karine Darjinoff & Francois Pannequin, 2000. "Demande d'assurance : Faut-il abandonner le critère de l'espérance d'utilité ?," Cahiers de la Maison des Sciences Economiques bla00004, Université Panthéon-Sorbonne (Paris 1).
    13. John Quiggin, 2022. "Production under uncertainty and choice under uncertainty in the emergence of generalized expected utility theory," Theory and Decision, Springer, vol. 92(3), pages 717-729, April.
    14. Maier, Johannes & Rüger, Maximilian, 2010. "Measuring Risk Aversion Model-Independently," Discussion Papers in Economics 11873, University of Munich, Department of Economics.
    15. Chateauneuf, Alain & Ventura, Caroline, 2010. "The no-trade interval of Dow and Werlang: Some clarifications," Mathematical Social Sciences, Elsevier, vol. 59(1), pages 1-14, January.
    16. Grant, S. & Quiggin, J., 2001. "A Model-Free Definition of Increasing Uncertainty," Discussion Paper 2001-84, Tilburg University, Center for Economic Research.
    17. Safra, Zvi & Segal, Uzi, 1998. "Constant Risk Aversion," Journal of Economic Theory, Elsevier, vol. 83(1), pages 19-42, November.
    18. Alain Chateauneuf & Ghizlane Lakhnati, 2007. "From sure to strong diversification," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(3), pages 511-522, September.
    19. Quiggin, John & Chambers, Robert G., 2006. "Supermodularity and risk aversion," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 1-14, July.
    20. van Bruggen, Paul & Laeven, Roger J. A. & van de Kuilen, Gijs, 2024. "Higher-Order Risk Attitudes for Non-Expected Utility," Other publications TiSEM c566934e-eb60-4b4b-a972-4, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    Risk Aversion; Non-expected Utility;

    JEL classification:

    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.