IDEAS home Printed from https://ideas.repec.org/p/ecm/ausm04/324.html
   My bibliography  Save this paper

Bayesian Estimation of Non-Gausian Time Series with Applicaitons to Transaction Data

Author

Listed:
  • Gael Martin
  • Chris Strickland
  • Catherine Forbes

Abstract

A general Bayesian Markov Chain Monte Carlo methodology is utilized for conducting an analysis of the intensity process of stock market data. The sampling scheme employed is a hybrid of the Gibbs and Metropolis Hastings algorithms. Both duration and count data time series approaches are utilized to model trading intensity. Regression effects are incorporated in the model so that market microstructure hypothesis can be tested. The specific analysis is undertaken on Australian stock market data.

Suggested Citation

  • Gael Martin & Chris Strickland & Catherine Forbes, 2004. "Bayesian Estimation of Non-Gausian Time Series with Applicaitons to Transaction Data," Econometric Society 2004 Australasian Meetings 324, Econometric Society.
  • Handle: RePEc:ecm:ausm04:324
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Non Gaussian; Kalman Filter; Bayesian; Markov Chain Monte Carlo;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.