IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/4030.html
   My bibliography  Save this paper

Learn Then Test: Calibrating Predictive Algorithms to Achieve Risk Control

Author

Listed:
  • Angelopoulos, Anastasios N.
  • Bates, Stephen
  • Candes, Emmanuel J.
  • Jordan, Michael I.
  • Lei, Lihua

    (Stanford U)

Abstract

We introduce a framework for calibrating machine learning models so that their predictions satisfy explicit, finite-sample statistical guarantees. Our calibration algorithm works with any underlying model and (unknown) data-generating distribution and does not require model refitting. The framework addresses, among other examples, false discovery rate control in multi-label classification, intersection-over-union control in instance segmentation, and the simultaneous control of the type-1 error of outlier detection and confidence set coverage in classification or regression. Our main insight is to reframe the risk-control problem as multiple hypothesis testing, enabling techniques and mathematical arguments different from those in the previous literature. We use our framework to provide new calibration methods for several core machine learning tasks with detailed worked examples in computer vision and tabular medical data.

Suggested Citation

  • Angelopoulos, Anastasios N. & Bates, Stephen & Candes, Emmanuel J. & Jordan, Michael I. & Lei, Lihua, 2022. "Learn Then Test: Calibrating Predictive Algorithms to Achieve Risk Control," Research Papers 4030, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:4030
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:4030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.