IDEAS home Printed from https://ideas.repec.org/p/ecl/ohidic/2007-2.html
   My bibliography  Save this paper

Affine Term Structure Models

Author

Listed:
  • Cheridito, Patrick

    (Princeton U)

  • Filipovic, Damir

    (U of Munich)

  • Kimmel, Robert L.

    (Ohio State U)

Abstract

Dai and Singleton (2000) study a class of term structure models for interest rates that specify the instantaneous interest rate as an affine combination of the components of an N-dimensional affine diffusion process. Observable quantities of such models are invariant under regular affine transformations of the underlying diffusion process. And in their canonical form, the models in Dai and Singleton (2000) are based on diffusion processes with diagonal diffusion matrices. This motivates the following question: Can the diffusion matrix of an affine diffusion process always be diagonalized by means of a regular affine transformation? We show that if the state space of the diffusion is of the form D = Rm+ x RN - m for integers 0 ? m? N satisfying m ? 1 or m ? N - 1, then there exists a regular affine transformation of D onto itself that diagonalizes the diffusion matrix. On the other hand, we provide examples of affine diffusion processes with state space R2+ x R2 whose diffusion matrices cannot be diagonalized through regular affine transformation.

Suggested Citation

  • Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2006. "Affine Term Structure Models," Working Paper Series 2007-2, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
  • Handle: RePEc:ecl:ohidic:2007-2
    as

    Download full text from publisher

    File URL: http://www.cob.ohio-state.edu/fin/dice/papers/2007/2007-2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Andrea Buraschi & Paolo Porchia & Fabio Trojani, 2010. "Correlation Risk and Optimal Portfolio Choice," Journal of Finance, American Finance Association, vol. 65(1), pages 393-420, February.
    3. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Christian Gourieroux & Razvan Sufana, 2006. "A Classification of Two-Factor Affine Diffusion Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 31-52.
    6. Pierre Collin‐Dufresne & Robert S. Goldstein & Christopher S. Jones, 2008. "Identification of Maximal Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 63(2), pages 743-795, April.
    7. Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2007. "Market price of risk specifications for affine models: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 83(1), pages 123-170, January.
    8. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    9. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    10. Egorov, Alexei V. & Li, Haitao & Ng, David, 2011. "A tale of two yield curves: Modeling the joint term structure of dollar and euro interest rates," Journal of Econometrics, Elsevier, vol. 162(1), pages 55-70, May.
    11. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    12. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    13. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    14. Samuel Thompson, 2008. "Identifying Term Structure Volatility from the LIBOR-Swap Curve," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 819-854, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oh Kwon, 2009. "On the equivalence of a class of affine term structure models," Annals of Finance, Springer, vol. 5(2), pages 263-279, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    2. Aït-Sahalia, Yacine & Kimmel, Robert L., 2010. "Estimating affine multifactor term structure models using closed-form likelihood expansions," Journal of Financial Economics, Elsevier, vol. 98(1), pages 113-144, October.
    3. Almeida, Caio & Graveline, Jeremy J. & Joslin, Scott, 2011. "Do interest rate options contain information about excess returns?," Journal of Econometrics, Elsevier, vol. 164(1), pages 35-44, September.
    4. Gourieroux, Christian & Sufana, Razvan, 2011. "Discrete time Wishart term structure models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 815-824, June.
    5. Kimmel, Robert L., 2007. "Complex Times: Asset Pricing and Conditional Moments under Non-affine Diffusions," Working Paper Series 2007-6, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    6. Xiaowei Zhang & Peter W. Glynn, 2018. "Affine Jump-Diffusions: Stochastic Stability and Limit Theorems," Papers 1811.00122, arXiv.org.
    7. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    8. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.
    9. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    10. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    11. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    12. Hlouskova, Jaroslava & Sögner, Leopold, 2020. "GMM estimation of affine term structure models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 2-15.
    13. Creal, Drew D. & Wu, Jing Cynthia, 2015. "Estimation of affine term structure models with spanned or unspanned stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 60-81.
    14. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    15. Scott Joslin, 2018. "Can Unspanned Stochastic Volatility Models Explain the Cross Section of Bond Volatilities?," Management Science, INFORMS, vol. 64(4), pages 1707-1726, April.
    16. Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013. "Density approximations for multivariate affine jump-diffusion processes," Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.
    17. repec:wyi:journl:002142 is not listed on IDEAS
    18. Joslin, Scott & Konchitchki, Yaniv, 2018. "Interest rate volatility, the yield curve, and the macroeconomy," Journal of Financial Economics, Elsevier, vol. 128(2), pages 344-362.
    19. repec:wyi:journl:002117 is not listed on IDEAS
    20. Chen, Bin & Hong, Yongmiao, 2011. "Generalized spectral testing for multivariate continuous-time models," Journal of Econometrics, Elsevier, vol. 164(2), pages 268-293, October.
    21. Collin-Dufresne, Pierre & Goldstein, Robert S. & Jones, Christopher S., 2009. "Can interest rate volatility be extracted from the cross section of bond yields?," Journal of Financial Economics, Elsevier, vol. 94(1), pages 47-66, October.
    22. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:ohidic:2007-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cdohsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.