IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20243004.html
   My bibliography  Save this paper

Nowcasting Made Easier: a toolbox for economists

Author

Listed:
  • Linzenich, Jan
  • Meunier, Baptiste

Abstract

We provide a versatile nowcasting toolbox that supports three model classes (dynamic factor models, large Bayesian VAR, bridge equations) and offers methods to manage data selection and adjust for Covid-19 observations. The toolbox aims at simplifying two key tasks: creating new nowcasting models and improving the policy analysis. For model creation, the toolbox automatizes testing input variables, assessing model accuracy, and checking robustness to the Covid period. The toolbox is organized along a structured three-step approach: variable pre-selection, model selection, and Covid robustness. Non-specialists can easily follow these steps to develop high-performing models, while experts can leverage the automated tests and analyses. For regular policy use, the toolbox generates a large range of outputs to aid conjunctural analysis like news decomposition, confidence bands, alternative forecasts, and heatmaps. These multiple outputs aim at opening the "black box" often associated with nowcasts and at gauging the reliability of real-time predictions. We showcase the toolbox features to create a nowcasting model for global GDP growth. Overall, the toolbox aims at facilitating creation, evaluation, and deployment of nowcasting models. Code and templates are available on GitHub: https://github.com/baptiste-meunier/Nowcasting_toolbox. JEL Classification: C22, C51, C52, C53, C55

Suggested Citation

  • Linzenich, Jan & Meunier, Baptiste, 2024. "Nowcasting Made Easier: a toolbox for economists," Working Paper Series 3004, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20243004
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecb.wp3004~3ce9d0d8ca.en.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Bayesian VAR; bridge equation; dynamic factor model; forecasting; large dataset;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20243004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.