IDEAS home Printed from https://ideas.repec.org/p/ebg/heccah/1049.html
   My bibliography  Save this paper

Fundamentals and Exchange Rate Forecastability with Machine Learning Methods

Author

Listed:
  • Michalski , Tomasz
  • Amat , Christophe

Abstract

Simple exchange rate models based on economic fundamentals were shown to have a difficulty in beating the random walk when predicting the exchange rates out of sample in the modern floating era. Using methods from machine learning -- sequential adaptive ridge regression -- that prevent overfitting in-sample for better and more stable forecasting performance out-of-sample the authors show that fundamentals from the PPP, UIRP and monetary models consistently improve the accuracy of exchange rate forecasts for major currencies over the floating period era 1973-2013 and are able to beat the random walk prediction giving up to 5% improvements in terms of the RMSE at a 1 month forecast. "Classic'' fundamentals hence contain useful information about exchange rates even for short forecasting horizons -- and the Meese and Rogoff (1983) puzzle is overturned. Such conclusions cannot be obtained when rolling or recursive OLS regressions are used as is common in the literature.

Suggested Citation

  • Michalski , Tomasz & Amat , Christophe, 2014. "Fundamentals and Exchange Rate Forecastability with Machine Learning Methods," HEC Research Papers Series 1049, HEC Paris.
  • Handle: RePEc:ebg:heccah:1049
    as

    Download full text from publisher

    File URL: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2448655
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuchen Zhang & Shigeyuki Hamori, 2020. "The Predictability of the Exchange Rate When Combining Machine Learning and Fundamental Models," JRFM, MDPI, vol. 13(3), pages 1-16, March.

    More about this item

    Keywords

    exchange rates; forecasting; machine learning; purchasing power parity; uncovered interest rate parity; monetary exchange rate models;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebg:heccah:1049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antoine Haldemann (email available below). General contact details of provider: https://edirc.repec.org/data/hecpafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.