IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1282.html
   My bibliography  Save this paper

Forecasting the Risk of Speculative Assets by Means of Copula Distributions

Author

Listed:
  • Benjamin Beckers
  • Helmut Herwartz
  • Moritz Seidel

Abstract

The GARCH(1,1) model and its extensions have become a standard econometric tool for modeling volatility dynamics of financial returns and port-folio risk. In this paper, we propose an adjustment of GARCH implied conditional value-at-risk and expected shortfall forecasts that exploits the predictive content of uncorrelated, yet dependent model innovations. The adjustment is motivated by non-Gaussian characteristics of model residuals, and is implemented in a semiparametric fashion by means of conditional moments of simulated bivariate standardized copula distributions. We conduct in-sample forecasting comparisons for a set of 18 stock market indices. In total, four competing copula-GARCH models are contrasted against each other on the basis of their one-step ahead forecasting performance. With regard to forecast unbiasedness and precision, especially the Frank-GARCH models provide most conservative risk forecasts and out-perform all rival models.

Suggested Citation

  • Benjamin Beckers & Helmut Herwartz & Moritz Seidel, 2013. "Forecasting the Risk of Speculative Assets by Means of Copula Distributions," Discussion Papers of DIW Berlin 1282, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1282
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.417667.de/dp1282.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    copula distributions; expected shortfall; GARCH; model selection; non-Gaussian innovations; risk forecasting; value-at-risk;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.